Publications / Scientific Publications /

Retinal image quality in the rodent eye


Many rodents do not see well. For a target to be resolved by a rat or a mouse, it must subtend a visual angle of a degree or more. It is commonly assumed that this poor spatial resolving capacity is due to neural rather than optical limitations, but the quality of the retinal image has not been well characterized in these animals. We have modified a double-pass apparatus, initially designed for the human eye, so it could be used with rodents to measure the modulation transfer function (MTF) of the eye’s optics. That is, the double-pass retinal image of a monochromatic (l 5 632.8 nm) point source was digitized with a CCD camera. From these double-pass measurements, the single-pass MTF was computed under a variety of conditions of focus and with different pupil sizes. Even with the eye in best focus, the image quality in both rats and mice is exceedingly poor. With a 1-mm pupil, for example, the MTF in the rat had an upper limit of about 2.5 cycles0deg, rather than the 28 cycles0deg one would  obtain if the eye were a diffraction-limited system. These images are about 10 times worse than the comparable retinal images in the human eye. Using our measurements of the optics and the published behavioral and electrophysiological contrast sensitivity functions (CSFs) of rats, we have calculated the CSF that the rat would have if it had perfect rather than poor optics. We find, interestingly, that diffraction-limited optics would produce only slight improvement overall. That is, in spite of retinal images which are of very low quality, the upper limit of visual resolution in rodents is neurally determined. Rats and mice seem to have eyes in which the optics and retina0brain are well matched.

If you like it, please share it...Tweet about this on Twitter0Share on Facebook0