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Papillary carcinoma is the most prevalent type of thyroid cancer. Its diagnosis requires accurate and subjective
analyses from expert pathologists. Here we propose a method based on the Hough transform (HT) to detect and
objectively quantify local structural differences in collagen thyroid nodule capsules. Second harmonic generation
(SHG) microscopy images were acquired on non-stained histological sections of capsule fragments surrounding
the healthy thyroid gland and benign and tumoral/malignant nodules. The HT was applied to each SHG image
to extract numerical information on the organization of the collagen architecture in the tissues under analysis.
Results show that control thyroid capsule samples present a non-organized structure composed of wavy collagen
distribution with local orientations. On the opposite, in capsules surrounding malignant nodules, a remodeling
of the collagen network takes place and local undulations disappear, resulting in an aligned pattern with a global
preferential orientation. The HT procedure was able to quantitatively differentiate thyroid capsules from capsules
surrounding papillary thyroid carcinoma (PTC) nodules. Moreover, the algorithm also reveals that the collagen
arrangement of the capsules surrounding benign nodules significantly differs from both the thyroid control and
PTC nodule capsules. Combining SHG imaging with the HT results thus in an automatic and objective tool to
discriminate between the pathological modifications that affect the capsules of thyroid nodules across the pro-
gressions of PTC, with potential to be used in clinical settings to complement current state-of-the-art diagnostic
methods. © 2020 Optical Society of America

https://doi.org/10.1364/AO.393721

1. INTRODUCTION

Thyroid cancer represents the most common endocrine malig-
nancy. If treatment is well timed, patients affected by the most
frequent versions of this pathology can be efficiently cured, thus
timely diagnosis is very important [1]. Tumors (or nodules)
originated from thyroid follicular cells are mainly divided into
papillary (PTC), follicular (FTC), and anaplastic (ATC) thyroid
carcinoma [2]. PTC accounts for 85%–90% of all thyroid
cancer cases. Unlike ATC (an inoperable tumor with a mean
survival time of∼6 months after diagnosis), PTC and FTC are
less aggressive, and the survival rate is noticeably higher [3].

The analysis of morphological features of hematoxylin and
eosin (H&E) stained samples under bright-field microscopy is
currently regarded as the gold standard to distinguish normal

and tumor thyroid tissue [4]. However, it is well known that this
is a complex and highly time-consuming process, and the final
diagnosis is based on a subjective opinion that strongly depends
on the pathologist’s experience [5].

In recent years, different optical techniques dealing with
the characterization and diagnosis of thyroid tissues have been
introduced. These include infrared spectroscopy [6–8], Raman
spectroscopy [9,10], and multiphoton microscopy, including
both two-photon excitation fluorescence microscopy (TPEF)
and second harmonic generation (SHG) microscopy [11].
Whereas TPEF signals allowed visualizing thyroid gland folli-
cles, the collagen content and associated structures were only
observable in SHG images. Changes in these microstructures
were clearly identified when comparing normal, nodular goiter,
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and PTC tissue. Texture analyses were used to differentiate
capsules surrounding the nodules in thyroid follicular adenoma
(FA) and PTC in SHG images [12]. In addition, in an exper-
iment dealing with polarization-resolved SHG, the degree of
linear polarization was found to decrease in cancerous thyroid
tissue (compared to non-tumoral tissue), suggesting a collagen
disorder increase [13]. More recently, this technique has pro-
vided additional information about the capsule surrounding
thyroid nodules [14].

The combination of Fourier transform infrared spectroscopy
and a canonical discriminant analysis method was reported to
accurately discriminate benign from malignant thyroid nodules
[6]. This tool was later used not only to compare normal and
FTC tissues [15] but also to distinguish thyroid carcinoma
subtypes (in particular FTC from follicular variant papillary car-
cinoma) [16] and to differentiate FA (i.e., benign) from widely
invasive FTC (WI-FTC) tissues [8]. Raman spectroscopy
was also demonstrated to provide an accurate tissue classifi-
cation to discriminate between normal thyroid parenchyma
and follicular patterned nodules and between adenoma and
carcinoma [10,17].

Collagen structure and content are essential in the analysis
of tumor progression and development [18]. Because colla-
gen is known to yield strong optical signals resulting from the
generation of second-order harmonics [19], SHG microscopy
represents a powerful tool for the diagnosis of different types of
cancer, such as thyroid, breast, ovarian, and skin, among others
(see [18,20] as general references).

The fibrous capsule surrounding the thyroid gland is made
of collagen fibers. This capsule has been reported to suffer inva-
sion in the presence of PTC [21]. In addition, a FA is a benign
encapsulated tumor of the thyroid gland [22]. Because both
PTC and FA might modify the capsule’s collagen arrangement
in a non-controlled manner, the purpose of this study has been
to establish objective methods to differentiate malignant from
benign thyroid nodules through the analysis of the capsular
collagen distribution.

2. METHODS AND MATERIAL

A. SHG Microscope

The experimental setup (Fig. 1) used in this work combines
a mode-locked Ti:sapphire laser (Tsunami, Spectra-Physics,
Santa Clara, California, USA) and a modified laser scanning
microscope (Leica TCS-SP, Wetzlar, Germany) equipped with
an infrared port.

The excitation wavelength was set to 780 nm, and the laser
beam was focused on the sample through a 40× objective
(numerical aperture [NA] = 0.75). The average power at the
sample’s plane was 15 mW, and the polarization of the light
beam was circular. The nonlinear signal from the sample was
collected in the forward direction (i.e., in transmission mode)
using a 0.9 NA condenser lens. Before reaching the photomul-
tiplier tube (PMT) used as detection unit, this signal passed two
spectral filters, a short-pass filter (FF01-750/SP-25, Semrock,
Rochester, New York, USA) to reject the fundamental beam and
a narrowband filter (FB390-10, Thorlabs, Newton, New Jersey,
USA) to isolate the SHG signal emitted by the tissues under
study. For all samples, the size of the SHG images acquired and

Fig. 1. Schematic diagram of the SHG microscope in transmission
mode. PMT, photomultiplier tube. See text for further details.

analyzed in this work was 250× 250 µm2. Three individual
frames were averaged to reduce noise.

B. Samples

This study was conducted at the University Politehnica of
Bucharest. Signed informed consent was obtained from each
patient. The samples were gently provided by the Pathology
Department of the Central University Emergency Military
Hospital of Bucharest, Romania. All samples were treated
following the tenets of the Declaration of Helsinki.

A set of thyroid fragments collected from different patients
were involved in the present experiment. Tissues were obtained
by means of surgical excision. These were fixed with formalin
and embedded in paraffin. For each sample, a pair of thin tissue
sections (4 µm thick) were cut with a microtome and mounted
on glass slides. One tissue section was stained with H&E and
another was left unstained. An expert pathologist visualized the
H&E stained sections with a bright-field microscope to iden-
tify the capsules surrounding both the thyroid gland (that we
regard as control) and the nodules. Some of these nodules were
diagnosed as benign FA, while others corresponded to PTC.
Whereas these H&E samples served as reference, the unstained
tissue pairs were used for SHG imaging. For the purpose of
this work, a total of 24 capsule areas were imaged: 10 from the
normal thyroid, 4 from FA, and 10 from PTC.

C. Image Analysis: SHG Signal and Density of Fibers

Once the SHG images were acquired, image processing was
carried out to compute two parameters: the SHG intensity
across the images and the density of the collagen fibers. Three
sub-areas with a size of ∼25× 25 µm2 were randomly chosen
across each sample (the operator made sure all these sub-areas
included collagen). The total SHG signal within these sub-areas
was calculated.

The collagen fiber density was computed as follows. For each
sub-area, the grayscale image was thresholded and converted
into a binary image, where white pixels represent the collagen
fibers. The open-source ImageJ software was used to perform
this image analysis. A cross section across the fiber bundles
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was made to calculate the number of fibers for each particu-
lar sub-area. Fiber density was expressed as number of fibers
per mm2.

D. Quantitative Analysis of the Collagen Distribution:
The Hough Transform

The spatial organization of the collagen fibers in the studied
samples was analyzed by using the Hough transform (HT) [23].
This is a well-established image-processing method for quanti-
tative analysis able to detect aligned segments (i.e., straight lines)
within an image, although it can also be used to localize circles
and ellipses [24,25].

Because of its robustness to noise, gap tolerance, and the over-
all superb performance, it has rapidly been implemented into
microscopy imaging applications [26,27]. In particular, this
algorithm has been used to automatically detect nanoparticles in
both atomic force microscopy and transmission electron images
[28–30]. The HT was also employed in various applications
dealing with biomedicine topics. For example it has been pro-
posed for quantitative assessment of collagen type I gels [31],
segmentation of blood cells [32], and, more recently, to detect
breast cancer from mammogram images through the detection
of circular features [33]. To the best of our knowledge, it has
never been used before to detect collagen remodeling in SHG
images of thyroid capsules.

In brief, the method is based on the pixel-by-pixel identifi-
cation of straight lines described in polar coordinates. When
the evidence of a straight line is found, the corresponding polar
coordinates are filed in a two-dimensional array called an accu-
mulator matrix. Each time a new straight line is detected, the
accumulator’s bin increments the corresponding value. The
local maximum values (peaks) in this accumulator space provide
the preferential orientations (θi ) found across the image. The
structural dispersion (SD) of the collagen fibers is defined as
the standard deviation of the θi .

Figure 2 presents an illustrative example of the use of the HT
in an artificial image. Colored arrows within the accumulator
matrix indicate the peaks corresponding to the bands marked
in the original image. When the bands (collagen fibers in the
case of a real image) are quasi-parallel, the peaks in the accu-
mulator are almost aligned along the vertical of a particular
θi . Because the image presents features quasi-aligned along
a similar direction, the SD takes a low value (7◦). The more
apart from a particular vertical location (i.e., θi value), the lower
the degree of organization. Preliminary tests (not included

Fig. 2. Representative example of the use of the HT in an artifi-
cial image presenting a structural organization along a preferential
direction. As a general idea, the higher the SD, the lower the degree of
organization of the collagen distribution.

here) on calibrated samples allowed establishing the intervals
assigned to the different organization groups. When SD≤ 20◦,
a quasi-organized structure is present. If SD> 40◦ the sample is
non-organized. Partially organized distributions correspond to
values in between. A custom-built MATLAB software was used
for image processing and HT calculations.

3. RESULTS

A. SHG Images of the Thyroid Capsule

Figure 3 shows representative SHG images of collagen-based
capsules of the thyroid gland and FA (benign) and PTC (malig-
nant) nodules from different patients. Bundles of collagen
fibers can be clearly observed in the three types of investigated
capsules.

A direct observation reveals qualitative differences in the
collagen organization between PTC samples and both FA and
control specimens. In particular, differences in the collagen
distribution of the capsule surrounding the healthy nodule
[Fig. 3(a)] and that surrounding a PTC nodule [Fig. 3(c)] are
readily visible. The former presents a non-organized pattern
with local undulations. For the latter, adjacent collagen fibers are
organized along a preferential direction and show mainly similar
orientations. From a qualitative point of view, the morphologi-
cal structure of the benign nodule capsule is similar to that found
in the thyroid capsule. However, for a better understanding and
description of the three experimental conditions involved, a
quantitative analysis must be carried out.

B. SHG Intensity

Because the SHG signal efficiency depends on both the density
and the arrangement of the collagen fibers, it is interesting to
compare the SHG intensity values for the different specimens
involved in the present experiment. Results for all samples are
shown in Fig. 4. Each symbol represents the mean SHG inten-
sity for the three sub-regions of each sample (see Section 2.C
for details).

The observed differences in SHG intensity between the
control capsules and those surrounding malignant nodules were
statistically significant (t-student, p < 0.0001). In addition,
differences were not statistically significant when comparing
control and benign samples (p = 0.37). This fact can be better
observed in Fig. 5, where the averaged SHG intensity values for
each group are depicted.

Fig. 3. SHG microscopy images showing representative areas of
capsules surrounding the (a) thryroid gland, (b) FA, and (c) PTC
nodules.
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Fig. 4. SHG intensity for each specimen involved in this study.
Each symbol corresponds to the mean value across the different sub-
areas within a sample. Blue, control; green, FA (benign); red, PTC
(malignant). Error bars indicate the standard deviation.

Fig. 5. Comparison of the averaged SHG intensity values (all areas
and samples within a category) for the three types of tissues. Labels are
the same as in Fig. 4.

C. Collagen Fiber Density

Collagen fiber density was computed as indicated previously.
For the three sets of tissues, Fig. 6 presents the mean values
together with the standard deviations. It can be observed that
the averaged density for control tissues is around 40% higher
than that of PTC ones. Moreover, the statistical analysis shows
that this difference is significant (p = 0.005). Significant
differences were also revealed when comparing PTC and FA
specimens (p = 0.001). No statistical differences were found
between control and FA samples (p = 0.052).

D. SD through the HT

The HT was used to determine the SD of the samples under
analysis. As stated in Section 2.D, the goal of the developed
algorithm was to find straight lines (i.e., collagen fibers) across
the SHG image. Once each line is found, its position and
orientation are filled in the so-called accumulator matrix.

From a mathematical point of view, those lines can be treated
as vectors. Consequently, two parameters are required to be cal-
ibrated before the analysis of the samples: (1) the vector length
and (2) the number of orientations (i.e., the maximum number
of different orientations θi that we want to file and take into
account to compute SD). Figure 7 depicts the SD values for two

Fig. 6. Density of collagen fibers (mean values) for the three groups
of samples. Each bar represents the mean value across all areas and sam-
ples within a category. Error bars represent the standard deviations.

Fig. 7. Calibration of the HT algorithm for two representative sam-
ples (control, blue; PTC, red). Values of SD as a function of the (a) vec-
tor length and(b) number of orientations.

representative samples (control and PTC) as a function of both
parameters. It can be observed that, the sample’s SD does not
depend on the length of the vector used [Fig. 7(a)]. However,
Fig. 7(b) shows that the SD presents some variations when
the number of orientations is below 60, but when the number
increases, the values of SD remain fairly constant.

Taking into account this calibration, the HT procedure was
applied to all specimens using a vector length of 10 pixels and a
number of orientations of 60. Figure 8 presents the correspond-
ing individual SD values. The averaged data for the three sets
of tissues are presented in Fig. 9. The statistical analysis shows
significant differences among the three groups (see labels in
the figure).

Fig. 8. SD of the capsule collagen fibers for all samples involved in
this experiment. As indicated, each colored symbol corresponds to a
different specimen.
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Fig. 9. Averaged SD values for the three sets of samples. Each bar
represents the mean value across all specimens within a category. Error
bars correspond to the standard deviations.

4. DISCUSSION AND CONCLUSIONS

Stained capsules of thyroid neoplasms were analyzed early with
polarized light by Koren and co-authors [34]. Although no sig-
nificant differences between minimally and widely invasive car-
cinomas were found, these were consistently different compared
to the capsules surrounding adenomas.

In our work, we have investigated the ability of SHG imaging
to objectively distinguish between the capsules surrounding
the healthy thyroid gland and nodules (FA and PTC). Given
that our approach deals with label-free (unstained) samples, its
potential utility is threefold: it can address (i) fixed, (ii) freshly
excised (ex vivo), and (iii) in vivo tissues. The latter might be
implemented into devices for endomicroscopy. In cancer-
related clinical environments, an objective classification and
characterization of these changes is crucial for certain diagnoses.
The performance of the mathematical algorithm known as HT
(as well as other parameters) has been successfully tested here.
This allowed detecting changes produced in the collagen struc-
ture of the non-stained capsules surrounding both PTC and FA
nodules, which were compared with the collagen structure in
capsules surrounding normal thyroid glands.

It is well known that SHG microscopy is a powerful tool
to assess and visualize the morphology of collagen-based tis-
sues. Pathologies and physical damages modify the collagen
architecture and distribution in tissues. Thus, the presence of
structural abnormalities or alterations of the intrinsic organi-
zation might compromise biological functions. In particular,
those related to the early stages of certain diseases, or pathologi-
cal conditions with not readily visible modifications, are very
important in the context of diagnostics. The combination of
useful imaging techniques (as the one used herein) with quanti-
tative indices/parameters might simplify observations, reduce
the time of analysis, and avoid erroneous (or controversial)
assessment.

Although some mathematical algorithms have been reported
to be very efficient in discriminating healthy from diseased
tissues [6,12–16,35,36], the results (or alternatively, the diag-
nosis) are usually based on global information from the features
of the entire image. However, local sub-areas might provide
relevant information, and the final score could be underesti-
mated and an erroneous diagnosis might be reached. Moreover,
although widely applied, some of those algorithms are (partially)
operator dependent, often combine analytical and manual
schemes (image filtering, contrast and smoothing adjusts), and

might fail when complex structural patterns (e.g., undulations,
interweaving, etc.) are present.

The main quantitative method here proposed is the HT. This
is based on the local analysis of SHG images to identify collagen
fibers within the thyroid capsule. No previous literature on
this topic has been found by these authors. This mathematical
tool eliminates the drawbacks of other methods because it is a
totally automated procedure and operates in a local-based man-
ner, storing/accumulating the corresponding information. In
addition, apart from the numerical values that can be obtained,
the visualization of the accumulator matrix provides direct and
intuitive information on the spatial arrangement of the tissue
under study.

In the present study, the capsules surrounding the healthy
thyroid were found to exhibit a non-regular distribution of their
collagen fibers. In terms of SD, the values were always above
20◦, indicating the absence of a preferential orientation. On the
contrary, for all PTC nodule capsule samples, SD values were
below 11◦, which indicates that a fairly well-organized structure
is present. However, in our opinion the most interesting finding
of this study is the ability of this tool to differentiate between the
capsules surrounding benign nodules from those surrounding
cancerous nodules and the thyroid gland (see Fig. 9).

The collagen patterns found in the present work for the con-
sidered thyroid tissues are consistent with those found by Hristu
et al. [12]. The present study consolidates thus the list of SHG
intensity-based metrics identified in this previous study as being
feasible for quantitatively differentiating between the capsules
surrounding benign and malignant thyroid nodules.

The metrics used herein, namely the SHG intensity and
the density of fibers, have also been used in studies addressing
other types of cancers (see [37,38] as general references). For the
samples involved in this study, these quantitative parameters
were able to significantly differentiate the capsules surrounding
the thyroid glands and FA thyroid nodules from those surround-
ing PTC ones. However, success in differentiating the thyroid
capsules from those surrounding FA nodules was limited. The
decrease in both SHG signal and collagen density of cancerous
tissues is a direct result of the fiber reorganization [20]. This
agrees well with previous measurements, and in the case of
mammary carcinoma tumors, it can be used to stage progression
levels [38,39].

Although the HT presents a series of advantages over alter-
native image analysis methods reported as solutions for the
quantitative assessment of the collagen architecture in tissues,
this tool should not be regarded as a competitor to those, and
hence a thorough comparison of the proposed method over
others lies outside the scope of this paper. Different comple-
mentary strategies could jointly play an important role in the
problem of collagen organization assessment for diagnostics
purposes. In the present case, the HT could potentially be
exploited for this purpose in tandem with alternative classifiers
based on other image parameters [12].

We believe that it is feasible to consider the HT as a valuable
tool to complement other image features (and vice versa). In this
regard, it is interesting to recall that the machine-learning com-
munity is placing significant efforts for developing methods
that can jointly exploit the outputs of distinct classifiers [40].
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Such fusion methods are successful in generating higher classi-
fication accuracy compared to any of the constituent classifiers.
Furthermore, we find important to highlight that exploit-
ing various ways of representing images is known to enable
powerful data augmentation strategies [41]. In this context,
image-processing operations that simulate specific acquisition
conditions or sample features bring an additional level of effi-
ciency in the case of classifying multiphoton microscopy images
for disease diagnostics [42]. Considering this, the image repre-
sentations yielded by the HT method are also likely to play an
important role for efficiently augmenting SHG image datasets,
a subject that we plan to investigate in the near future.

In conclusion, to visualize and understand the changes suf-
fered by the thyroid collagen-based nodule capsules under
pathological conditions (neoplastic), SHG images have been
acquired and analyzed. Whereas the collagen matrix in the
normal thyroid capsule revealed a wavy structure, the pattern of
capsules surrounding PTC nodules displayed a fine and relative
linear distribution with an absence of local orientations. On the
contrary, the collagen of capsules surrounding benign nodules
revealed an undulated architecture with local orientations.
Furthermore, the collagen distribution was assessed by employ-
ing a series of metrics to extract quantitative information from
the collected SHG images. Among these metrics, the HT was
found to be able to characterize collagen realignment in PTC
specimens and establish quantitative and significant differences
among the three types of tissues explored. Unlike the HT, the
SHG total intensity and the density of fibers were only able to
objectively differentiate the capsule of PTC nodules from that
surrounding both FA nodules and the thyroid gland.

The usefulness of the HT method might have clinical applica-
tions given its potential for enabling fast and accurate objective
diagnostic procedures. These could either be used for auto-
mated screening or could facilitate the work of pathologists in
computer-aided assays by forecasting an overall tissue state for a
sample under analysis, or by highlighting specific tissue regions
potentially affected by dysplastic or malignant modifications.
Such potential usefulness could enable higher precision-recall
compared to the current approaches used for the histological
assessment of thyroid tissues. In addition, future work to explore
the feasibility of the HT to distinguish other types of thyroid
cancers will be important for placing further steps toward
the accurate diagnostics of subtle neoplastic changes that are
difficult to be identified with current state-of-the art methods.
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