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routinely used as a selection criterion, and hence the image exhibiting highest average pixel intensity is consid-
ered. At this point an important question naturally arises with respect to this subjective selection procedure: 
Does the brightest image corresponds to the one with the best quality? Answering this question is not easy, since 
the definition of “image quality” is not only subjective but it is also very application-dependent. In this work we 
try to shed more light in this direction. We investigate the effects of different polarization states of the incident 
light on the quality of PSHG images, as perceived by human experts and automated image quality assessment 
methods. Special emphasis is placed on identifying which of the methods developed in this purpose over the past 
years by the digital image processing community are best aligned to human expert opinion in the case of PSHG 
micrographs collected under various polarization states of the incident light. The samples used as support in this 
experiment consist in a number of collagen-based ocular tissues; these specimens were chosen because of their 
relevance with respect to potential pre-clinical/clinical implementations of the herein approach. Although SHG 
(and PSHG) imaging is possible in both forward and backward configurations20,21, for similar reasons a backscat-
tered PSHG geometry was considered, as presented in the Methods section.

In the performed experiments two sets of polarization states are considered: linear (covering the equatorial 
plane of the Poincaré sphere) and elliptical (located along the vertical meridian), as described in the Methods 
section. Theoretical aspects related to the importance of linear and elliptical polarization states with respect to 
type-I collagen SHG imaging are discussed in22 and23 respectively. In the proposed framework, image quality 
of PSHG data sets is evaluated in terms of (1) mean-opinion scores (MOS) of human experts, (2) basic image 
properties such as Average Intensity (brightness), Contrast, Variance or Entropy and (3) by means of automated 
No-Reference Image Quality Assessment (NR-IQA) methods. The main focus of attention is placed on inves-
tigating how (2) and (3) correlate to (1), assessing this aspect by means of prediction accuracy and prediction 
monotonicity.

Understanding in more detail the relationships that take place between the polarization state of the excitation 
light, collagen organization and image quality has the potential to enable the development of optimized PSHG 
image acquisition, processing and analysis protocols, novel adaptive optics strategies and associated image fusion 
methods.

Image quality assessment. Image quality assessment (IQA) has always attracted considerable interest, but 
over the past three decades it became a key topic of concern. The reason is that digital images became broadly 
available to the general public and started to be acquired, compressed, transmitted, restored, and edited on a rou-
tine basis. Nowadays IQA methods play an important role in the design and benchmarking of imaging devices, 
and represent the necessary tools to evaluate up to what degree an image is degraded by various distortions and 
operations to which it is subjected.

Current IQA methodologies are split in two main categories: subjective and objective approaches. While the 
former are based on the quality scores provided by human experts, the latter rely on mathematical models that 
can automatically provide an estimate over the perceived image quality (which is consistent with that of a human 
observer). These objective methods are also divided into three main classes according to the availability of a 
distortion-free reference image: (i) NR-IQA, a.k.a. “blind”, (ii) Reduced-Reference IQA and (iii) Full-Reference 
IQA (FR-IQA).

FR-IQA methods yield a prediction of the visual quality of a target image, relative to the reference image, 
which is considered to be of optimal quality24. The use of these FR-IQA approaches in the realm of microscopy 
is difficult, due to the typical unavailability of reference images. On the opposite, NR-IQA methods predict the 
image quality based solely on the information contained in the tested image, thus their use in association with 
microscopy images is straightforward. On the other hand, one should consider that the great majority of con-
secrated NR-IQA methods, e.g.25–29, have been designed taking into account the characteristics and specifics of 
natural images collected with digital cameras, whereas images collected by microscopy systems differ due to the 
nature of the imaged scenes and the acquisition mechanisms. This suggests that the application of such NR-IQA 
metrics to microscopy data sets may lead to unpredictable results. Although a number of microscopy oriented 
NR-IQA approaches have been reported30–34, these were mainly developed to address very specific applications, 
what might generate similar concerns over their reliability and predictability when used in other scenarios. To the 
best of our knowledge, the use of NR-IQA methods in combination with PSHG data sets represents a subject that 
has not been previously addressed.

Our work has been focused on investigating some of the effects on image quality of the polarization states typi-
cally available in a PSHG system and typically used for collagen tissue imaging. While in most PSHG experiments 
image quality is mainly considered in terms of the image intensity (brightness), our experiment extends this 
approach by adding to the evaluation framework additional basic metrics such as Contrast, Variance or Entropy 
(defined in the Methods section). Furthermore, we additionally employ 15 prominent NR-IQA methods devel-
oped by the image processing community: BRISQUE25, BLIINDS226, SSEQ35, BIQAA36, BIQI28, CPBD37, BIBLE38, 
CDIQA39, DCTSP40, MLV41, NIQE27, QAC42, SML43, SDQI44, ILNIQE45. The evaluation framework includes as 
well a simplistic quality estimator called ARDE31, previously designed taking into account typical image proper-
ties considered by human experts when they investigate laser scanning microscopy images. A discussion over the 
mechanisms of these NR-IQA methods (16 in total here) falls outside the scope of our paper, but the interested 
readers can find detailed information in the original publications and source codes. Complete algorithm titles are 
provided in the Methods section.

Results
Evaluation Framework. For every sample here used 24 PSHG images were involved in the study, 12 cor-
responding to the considered Linear Polarization States (LPS), and 12 corresponding to the considered Elliptical 
Polarization States (EPS); more information is provided in the Methods section. Based on the image sets 
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column correspond to those with the highest Average Intensity (i.e. the brightest one). Finally, the panels on the 
right are those images selected as best in a “majority voting scheme” by the top three NR-IQA methods according 
to the PLCC, SROCC and RMSE analyses. In this voting scheme SDQI, DCTSP and CPBD assign their vote to the 
image in the APS set which scores higher than the rest. The image displayed is the instance in the APS set which 
obtains the highest number of votes. In the case of image sets of samples #3 and #5, each of the three considered 
NR-IQA metrics vote different images as best, and in these cases we display in Fig. 1 the image voted by SDQI, the 
best NR-IQA metrics according to performed correlation analyses. For each image selected based on this voting 
strategy the names of the responsible NR-IQA metrics are displayed underneath the image instance. The nomen-
clature of the images in the APS sets is discussed in the Methods section, and the coordinates of the displayed 
instances can be visualized in Poincaré sphere representations (see Supplementary Fig. S1).

In the scene imaged for generating the Sample #1 set collagen fibers arranged in a cross-hatched pattern can 
be observed (both horizontal and vertical orientations). In this set the E_m60 instance is the brightest image, 
the image with highest MOS, and unanimously voted by the top three NR-IQA methods. This fact is of interest 
since clinical ophthalmologic applications are mainly oriented to human patients where the diagnoses of some 
pathologies is classically based on the visualization of certain features and the observation of particular changes 
in the collagen structure.

For samples #2 and #5, the brightest, highest MOS, and NR-IQA voted images are different. This must be due 
to the fact that a random collagen arrangement is present. Since the collagen fibers exhibit a lack of dominant 
orientation, different incident polarization states might provide images with similar characteristics. In both sets 
the NR-IQA voted image is better in terms of information content than the brightest image (according to human 
expert opinion). In the PSHG images of the rat cornea (sample #2) we can observe sets of fibers with a non-regular 
distribution, where the presence of undulations is dominant. In the PSHG images of the bovine sclera (sample 
#5), short and random distributed collagen fibers (typical to the structure of the sclera) can be easily visualized.

For sample #3, the MOS and NR-IQA voted for the same instances. The MOS/NR-IQA most voted instance, 
E_m15, is less bright than L_90, but details of interest can be better observed as they lack the illumination gra-
dient present in L_90, which biases visual inspection. The content of the PSHG images collected for this hen 
cornea specimen depicts a stroma structure composed of well-aligned fibers, where both individual thickness and 
inter-fiber space can easily be computed. In potential diagnostics scenarios, modifications in the value of related 
parameters can be associated to an edematous pathological process.

For sample #4 the brightest and highest MOS images coincide (L_90). It is worth to mention that the incident 
polarization for this image is parallel to the organization of the fibers there shown, resulting in maximal SHG 
intensity. CPBD and DCTSP indicate a different image as the best, however SDQI also provides L_90 as the 
highest scored image. In these images collected on a histological section of a rabbit cornea specimen the different 
layers of the corneal stroma can be distinguished. It can be observed that each layer lies parallel to surface of the 
cornea.

Interestingly, for the five image sets here analyzed the proposed NR-IQA voting scheme always selects as best 
an image collected under elliptical polarization, independently of the collagen distribution of the samples. This 
may be connected to the fact that in most cases images collected under elliptical polarization states contain a 
surplus of information in comparison to the ones collected in a linear polarization configuration49. This addi-
tional information typically translates in additional image content (e.g. structures, edges), and hence an increased 
response to operators based on image gradients that provide information over sharpness/focus.

Sample #1 Sample #2 Sample #3 Sample #4 Sample #5 Mean

SDQI 0.4180 0.3541 0.5244 0.3162 0.8280 0.4881

DCTSP 0.4028 0.6890 0.4568 0.3956 0.6782 0.5245

CPBD 0.4305 0.6916 0.4638 0.4768 0.8983 0.5922

BIBLE 0.5492 0.6435 0.4659 0.4375 0.9600 0.6112

SSEQ 0.5094 0.7158 0.3673 0.5082 1.1031 0.6408

BIQAA 0.6706 0.7827 0.5798 0.6321 0.6480 0.6626

ARDE 0.6900 0.8145 0.8496 0.2394 0.8110 0.6809

BLIINDS2 0.8371 0.6813 1.0973 0.3921 0.6700 0.7356

MLV 0.5611 0.6946 0.7031 0.8744 1.1051 0.7877

BIQI 0.7574 0.7981 0.4482 0.7637 1.2484 0.8032

CDIQA 0.8276 0.8600 1.1500 0.2821 0.9427 0.8125

QAC 0.8312 0.6499 0.6554 1.2202 1.1559 0.9025

SML 0.5642 0.6795 0.8219 1.2161 1.2988 0.9161

NIQE 0.5067 0.8241 1.2996 0.9900 1.0295 0.9300

BRISQUE 0.4747 0.5960 1.2195 1.2797 1.1812 0.9502

ILNIQE 0.7678 0.7495 1.1730 1.0600 1.3427 1.0186

Table 6. RMSE of the considered NR-IQA methods across the five tested PSHG image sets.
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Discussion
A typical approach in PSHG experiments is to select the brightest image of a set to represent the observed scene 
for either visual inspection purposes or for subjecting it to automated computer vision methods (e.g. segmenta-
tion, object recognition, image classification, etc.). This approach is mainly connected to the fact that in PSHG 
imaging exists a clear connection between the image intensity and the polarization direction of the excitation 
beam. This relationship, thoroughly discussed to date10–12,50,51, is related to the fact that for tissue areas with col-
lagen fibers exhibiting a preferential orientation the brightest image is achieved when this orientation is matched 

Figure 1. PSGH image instances with highest MOS, highest Average Intensity and most voted by the top three 
NR-IQA methods, SDQI, DCTSP and CPBD (see text for more details on the voting scheme). The signal scale 
bar is shown at the right of the normalized SHG images. Scale bar: 50 �m.



www.nature.com/scientificreports/

7

with a particular polarization configuration. While this phenomena is very important, as it enables a wide variety 
of numerical methods to quantify collagen organization, e.g.13,14,17–19, our experiment indicates that the brightest 
PSHG image in a set coincides only in particular scenarios with the image perceived as best by human experts. 
This can be easily observed in Fig. 1, and the results of the performed PLCC, SROCC and RMSE analyses con-
solidate this claim. In Tables 1, 2 and 3 it can be observed that although the image intensity is on average better 
aligned to human perception when compared to other evaluated image properties (such as Contrast, Variance or 
Entropy), the corresponding PLCC, SROCC and RMSE scores are low for some of the tested image sets suggest-
ing a weak correlation between human expert opinion and image brightness.

These initial observations led us to seek alternative ways of ranking PSHG image sets in terms of image qual-
ity. In this regard, we have turned our attention to a set of prominent NR-IQA methods. These have been mainly 
designed taking into account the characteristics of natural images (except ARDE) currently acquired on a daily 
basis by the general public which nowadays has large-scale access to digital cameras. The PLCC, SROCC and 
RMSE correlation analyses performed in this second part of the experiment indicate a series of alternatives to 
image brightness with respect to the problem of estimating the quality of a PSHG image. These alternatives con-
sist on NR-IQA methods that provide better prediction accuracy and prediction monotonicity to the opinions of 
human experts in terms of PSHG image quality.

Our experiments have been motivated as well by the fact that the great majority of IQA methods reported to 
date are developed taking into account the characteristics of natural images, whereas images collected by laser 
scanning microscopy differ due to the nature of the imaged scenes and the acquisition mechanisms. In these 
circumstances, randomly selecting a NR-IQA method from the literature and applying it to PSHG (or other laser 
scanning microscopy) image sets can lead to unpredictable results. Shedding more light over which IQA methods 
are better aligned to microscopy oriented applications is thus very important in our opinion. Studies on this topic 
are scarce in the literature, making it poorly documented to date despite the huge importance that image quality 
assessment holds with respect to microscopy imaging. Manually searching for representative images in large-scale 
image sets collected over a scene of interest is time demanding and subjective; these aspects can be overpassed by 
employing automated IQA methods. Furthermore, IQA methods hold as well considerable potential for image 
fusion and scene representation frameworks52–55 or adaptive optics56 applications, where the quality of the final 
result is closely related to the performance of the decision criteria that are used. Moreover, appropriate IQA 
methods could speed-up and optimize the outputs of machine intelligence methods aimed at tissue classification 
by automatically selecting a single instance from an extended image set of the same scene, which is better suited 
then others with respect to a specific computer vision methodology, e.g. Bag-of-Features19, Deep-Learning57. An 
example in this regard can be found in58 where the ARDE31 operator was used to select particular image instances 
from z-stacks collected with Two-Photon Excitation Microscopy on rat liver tissue, to be further used in a tissue 
classification framework.

To conclude, in this work we have investigated how basic image properties and NR-IQA methods compare 
to the opinions of human experts in the case of PSHG image sets collected on several types of collagenous ocu-
lar tissues. Our results show that, on average, image brightness does better in predicting the opinion of human 
experts in terms of PSHG image quality, compared to other basic image properties such as Contrast, Variance or 
Entropy. On the other hand, the performed experiments show that solely using the Average Intensity as a decision 
criterion for image quality assessment is suitable only in particular cases. Part of the NR-IQA methods reported 
to date can represent better alternatives in this regard, whereas others provide worse performances. Thus, using 
NR-IQA methods in association with PSHG image sets is not straightforward, and should be done only after 
careful benchmarking. In the case of our experiments SDQI, DCTSP and CPBD were found to be the top three 
NR-IQA metrics that outperform the Average Intensity (brightness) in terms of accurately and monotonously 
predicting the opinion of human experts over PSHG image quality.

Methods
Experimental setup. The system used for imaging (Fig. 2) relies on a previously custom-built SHG micro-
scope59, which was modified to incorporate a polarization state generator (PSG) into the illumination pathway 
to modulate the polarization state of the incident light. For illumination, this PSHG system uses a Ti:Shapphire 
femtosecond laser (120-fs pulses, λ = 800 nm and 76 MHz repetition rate). The excitation beam encounters a XY 
scanning unit (a pair of non-resonant galvanometric mirrors) after traversing the PSG, and is focused on the sam-
ple through a non-immersion objective (20x, NA = 0.5). The backscattered SHG signal emerging from the sample 
is collected via the same objective and isolated by means of a narrow-band spectral filter (400 ± 10 nm) placed in 
front of the photomultiplier tube (PMT). The system is fully controlled through a custom LabviewTM software. 
In the case of the presented experiments the average incident laser power ranged between 10 and 50 mW at the 
sample’s plane.

The PSG incorporated in the experimental setup was designed in a double configuration, to generate sets of 
linear (null ellipticity, 2ψ = 0) and elliptical polarization states (null azimuth, 2χ = 0) as described in detail in50. 
Figure 3 shows a schematic diagram of the PSG to better understand how these considered polarization states are 
produced.

A fixed horizontal linear polarizer (PL), a rotatory half-wave plate (λ/2) and a removable quarter-wave plate 
(λ/4) are the three optical components of the PSG. The image sets collected under LPS were obtained by rotating 
the λ/2, in a PL + λ/2 combination (λ/4 excluded from the light path). These LPS are located 15 deg apart in azi-
muth on the equatorial plane of the Poincaré sphere. For the combination PL + λ/2 + λ/4 these linear states are 
switched to a set of elliptical ones (EPS, with 2χ = 0). These are located along the vertical meridian of the Poincaré 
sphere (including left and right circular) in steps of 15 deg in ellipticity.
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When the λ/4 plate is introduced in the optical pathway (EPS configuration) a slight change in the intensity 
beam occurs due to the additional light absorption corresponding to this optical element. This fact can hold an 
influence over the intensity of the corresponding SHG images and thus bias the opinions of human experts and 
the outputs of the considered image quality estimators. This potential issue has been addressed by slightly adjust-
ing the position of a neutral density filter (not displayed in Fig. 1) in order to achieve identical average intensities 
for the image instances acquired in the positions where the vertical meridian and equatorial plane of the Poincaré 
sphere intersect.

Investigated samples. Five non-stained collagen-based ocular tissues (namely cornea and sclera), were 
involved in the present study. In particular the specimens here used correspond to ex-vivo corneas from human 
(sample #1), rat (sample #2), and adult chicken (sample #3), all them fixed by paraformaldehyde. A histological 
section of a rabbit cornea (embedded in paraffin) and an ex-vivo bovine sclera (fixed by paraformaldehyde) were 
named as samples #4 and #5 respectively. The importance of SHG and PSHG imaging with respect to ocular tis-
sues has been thoroughly discussed to date in the literature60–67.

The use of animal and human tissue samples in this study was approved by the Universidad de Murcia ethics 
committee and all procedures were carried out in accordance with the approved guidelines, which also regulate 
the subject of informed consent for samples of human origin.

Figure 3. Experimental configuration of the PSG to generate linear and elliptical polarization states. PL: linear 
polarizer; λ/2: rotatory half-wave plate; λ/4: removable quarter-wave plate. The Poincaré spheres on the right 
show the two sets of polarization states: LPS (on the equatorial plane, upper panel) and EPS (along the vertical 
meridian, bottom panel).

Figure 2. Schematic representation of the custom-built polarimetric SHG microscope used for imaging. See 
text for further information.
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Non-linear mapping of predicted MOS to actual MOS. As recommended in46, before computing the 
PLCC, SROCC and RMSE correlation coefficients, a regression function was applied on the Predicted MOS sets 
in order to provide a nonlinear mapping between these and the actual MOS Scores. For this purpose, similar 
to25,29,35,47 we utilized a logistic function with an added linear term:
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In Eq. 5, x denotes the numerical value given by the considered basic metric (described in Table 7), or the NR-IQA 
methods, and βi �  1,…,5 are determined by least square fitting to the actual MOS values provided by the human 
experts.
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