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Single pixel imaging can be the preferred method over traditional 2D-array imaging in spectral ranges where
conventional cameras are not available. However, when it comes to real-time video imaging, single pixel imaging
cannot compete with the framerates of conventional cameras, especially when high-resolution images are desired.
Here we evaluate the performance of an imaging approach using two detectors simultaneously. First, we present
theoretical results on how low SNR affects final image quality followed by experimentally determined results.
Obtained video framerates were doubled compared to state of the art systems, resulting in a framerate from 22 Hz
for a 32 × 32 resolution to 0.75 Hz for a 128 × 128 resolution image. Additionally, the two detector imaging
technique enables the acquisition of images with a resolution of 256 × 256 in less than 3 s. © 2016 Optical

Society of America

OCIS codes: (110.0110) Imaging systems; (110.1758) Computational imaging; (230.6120) Spatial light modulators.
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1. INTRODUCTION

Single pixel imaging, or computational imaging, refers to a
technique where either the image of the object is modulated
in the focal plane (“backward scheme”) or the object is illumi-
nated by spatially coded patterns (“forward scheme”). For each
pattern, the reflected or transmitted intensity is measured using
a single detector, also called bucket collector, for example, a
photodiode or a photomultiplier. Once a finite amount of pat-
terns has been projected on the object, an image of the object
can be reconstructed based on the projected patterns and their
corresponding intensity. This approach is suitable for imaging
in the visible or infrared spectrum, in a terahertz environment,
for 2D or 3D imaging, in low light conditions, in microscopic
or natural scene environments, for grayscale and color imaging
[1–6]. Single pixel imaging might have the advantage to over-
come scattering when traversing through opaque media [3,7]
and enable imaging in spectral ranges where 2D-array cameras
are not available.

The projected patterns can be based on the noiselet trans-
form [8,9], on the discrete cosine transform [9], or they could
be random binary [10] or grayscale sinusoidal patterns [11].
Here, patterns based on the Hadamard transform [12–14]
are used, as utilized by many others [5,7,15–17]. The so-called
Hadamard patterns are easy to compute from a base N × N
Walsh–Hadamard matrix, which is also straightforward to gen-
erate. Additionally, the patterns are binary and therefore suit-
able for display on a digital micromirror device (DMD), and

they are considered to have the optimum design of an equally
weighted distribution of black and white pixels (except for the
first pattern where all pixels are white).

To obtain an image with a resolution ofN × N ,N 2 patterns
need to be projected to fully reconstruct the object. The binary
mathematical model of the Hadamard patterns consists of pos-
itive and negative ones (�1, −1). A DMD is able to display
binary patterns in that sense of “on” and “off,” basically 1
and 0, but not negative values. Therefore, it is recommended
to display not only one Hadamard pattern but also the inverted
counterpart to achieve the response of the negative when using
a single pixel setup. Most groups accomplish that by displaying
a pattern and successively the inverted complement [7,15,18],
which leads to a significant decrease in noise even when the
measurements are performed successively and not at the exact
time. However, the main disadvantage is the doubling of the
patterns displaying time because now a set of 2 × N 2 needs
to be displayed and this time is limited by the framerate of
the DMD. However, imaging time might be a crucial factor
when imaging at high resolutions if the lifetime of an object
is short or the object in constant motion. A solution to decrease
imaging time can be the utilization of a balanced detector [19]
or the implementation of a second detector [20,21]. Here, we
are pushing the hardware to current limitations in terms of im-
aging and reconstruction speed for N up to 256. Furthermore,
we demonstrate the maximum possible in terms of real-time
video streams for various resolutions. For readers new to the
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topic of single pixel imaging, we offer noise simulations, which
might help to understand why the use of the differential
Hadamard pattern single pixel imaging approach is recom-
mended.

2. EXPERIMENTAL SYSTEM

A simple imaging system was built as depicted in Fig. 1. The
object, a Siemens star printed on transparent paper and inserted
into black paper to block unwanted light into the system, is
back illuminated homogenously using a liquid fiber coming
from a broadband Xenon lamp (Hamamatsu L7810-02).
This light source was favored for the constant power output
over time, which is crucial when measuring small discrete am-
plitude modulations coming from the structured illumination
of the object. The object is imaged onto the DMD using a lens,
f1, in a 2f configuration (“backward scheme”). The employed
DMD (Vialux V-7001, controller board V4395, chipset DLP
4100, pixel size: 13.68 μm, resolution: 1024 × 768, and
memory: 8GB) can store up to 87380 binary patterns and
has a maximum display rate of 22.727 kHz. The Hadamard
patterns are created on the computer and transferred through
a USB 3.0 connection into the memory of the DMD. From the
memory of the DMD controller board, the patterns are con-
stantly available and can be displayed in an instant. In this
study, the display rate of the DMD was always at the maximum
because the main purpose of this study is real-time imaging.

Next, the set of patterns is displayed on the DMD. The
Hadamard patterns are scaled to 512 × 512 pixels on the
DMD (around 7 × 7 mm), meaning one pixel of a 32 × 32
Hadamard pattern resembles 16 × 16 pixel on the DMD,
one pixel in a 64 × 64 pattern resembles 8 × 8 pixels on the
DMD, and so on.

Since a DMD has only two states: reflecting light into one
direction or another, each detector (d1: Thorlabs PDA36; d2:
Thorlabs PDA100; both operating with the 10 db gain setting)
is placed with a condenser lens (f 2 � f 3 � 25 mm) at each
deflection path. That means that while displaying a binary pat-
tern on the DMD, the “white” or “1” parts of the pattern are
reflected into d1, while the “black” or “0” pixels are reflected
into d2. Further, the detectors are synchronized with the fram-
erate of the DMD, so that for each projected pattern a positive

and “negative” measurement is received. The measured inten-
sity of both detectors is transferred via an analog-to-digital con-
verter (National Instruments PCIe-6361 with a maximum
sampling rate of 2 MS/s; for two or more detectors the sam-
pling rate is reduced to 500 kS/s) to a PC. This allows for 21
measurements per pattern while running the DMD at the
maximum frequency of 22.727 kHz. Not all data is used
for further processing. Data from the start and the end of each
pattern measurement were removed because it was affected by
tiny wiggles coming from the settling time of the mirrors. The
remaining 17 measurements per pattern were averaged and re-
sult in one intensity measurement per pattern. Before further
proceeding, the average of the negative data is matched with the
average of the positive data by a simple factor. This step is nec-
essary because the negative data is contaminated with constant
background light coming from the “0” pixels around the
Hadamard pattern. Normalization of the data is recommend
to enhance image reconstruction [22–24]. Subsequently, the
negative data is subtracted from the corresponding positive data
and saved as final intensity measurement per pattern, intensityi,
which corresponds to the mathematical Hadamard pattern
description. From there an image of the object can be
reconstructed using the equation:

Image�m; n� �
XN 2

i

intensityi × patterni�m; n�; (1)

where patternm;n (m and n are pixel values in a N × N
Hadamard pattern matrix consisting of “�1s” and “−1s”) is re-
formatted to patterni. Each intensityi is multiplied by each
element of the corresponding patterni, which results in a sub-
image. The sum of all sub-images adds up to the final image.

3. RESULTS AND DISCUSSION

The following images and videos were obtained from our in-
house developed software written in C�� and running on a
desktop PC (i5-4590, quad-core, 3.3 GHz, 8 GB Ram). The
software is capable of reconstructing individual images and
composing real-time videos in an instant. Basic filters including
interpolation, contrast stretching and scaling could be applied
to improve visibility. Eventually, the reconstructed images and
videos obtained with N � 32, 64, and 128 were scaled (not
interpolated) to a size of 256 × 256 for viewing purposes,
and the images and videos are saved. Additionally, it is worth
mentioning that the experiment in this study took place in a
dark environment, and the setup was completely covered. The
SNR was high due to the direct illumination of the object with
the fiber tip and hence the direct imaging onto the DMD. We
performed the experiments with the laboratory lights on and
obtained similar results. Therefore, the impact of noise intro-
duced by an external light source, such as the two detectors
themselves or background light from the light source, any com-
puter monitor, or status LED, can be neglected in this study.
However, the next paragraph presents a more detailed analysis
of the impact of noise.

A. Dealing with Noise
One could argue that it is sufficient to display only the N 2 set
of pattern (without the inverted complement) as it is possible to

Fig. 1. Experimental system used to image a back illuminated object
(inset: Siemens star) onto the DMD with a lens f1. The detectors d1
and d2 collect the reflected light coming from the DMD.
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simulate or calculate the inverted counterpart. This can be per-
formed either by plainly subtraction the mean of all intensities
from all individual intensities [5,25] or by calculating the theo-
retical intensity value of the inverted pattern if one knows the
intensity of the first, full white, pattern. For demonstration pur-
poses, we will focus on the first simulation method and subtract
the mean value from all obtained measurements. In what
follows, we call this method A, and displaying the positives
and the inverted complement patterns refers to method B.

We used the object in Fig. 2, which has the size of 4 × 4
pixel and four different gray values in no particular order.
Figure 3 shows a comparison of the obtained values after
the intensity of the object was measured by N 2 � 16 patterns.
The upper row shows the values and the corresponding pattern
for method A where white equals �1 and black equals 0. The
second row shows values of method B where white pixels are
�1 and black pixels equal −1.

Simulating the inverted patterns leads to positive and neg-
ative intensity values (before, all intensity measurements were
positive because only positive values can be measured). Figure 4
displays the data obtained with method A: the graph (a) shows
the positive data and (b) the data after the subtraction of the
mean. Data from method B are shown in graph (c) as the green
curve, and graph (d) illustrates the numerical difference be-
tween both methods. In Fig. 4, the overall curve of graphs
(b) and (c) resemble the same trend but differ by a factor 2.
However, a reconstruction of the object is perfectly possible.
Unfortunately, there is no perfect system and noise is a steady
companion. Noise can be introduced by the photodetector, the
light source, and background illumination (PC monitor, status

LEDs, and laboratory lights) and can be divided in instrument
and photon noise. For readers with further interest in the im-
pact of noise in a Hadamard imaging system, we recommend
the following reference where the topic is discussed in great de-
tail [26]. Here, we show in brief, a comparison of how noise
influences the outcome of the measurements in both methods.

Figure 5 is similar to Fig. 4 with additionally introduced
Gaussian white noise to both methods using the “awgn” func-
tion in the MATLAB software package. This type of noise sim-
ulates the fluctuation in illumination levels between each
pattern and is therefore preferred to Poisson noise, which
would be the preferred method to simulate detector noise.

The first row of Fig. 5 shows data where noise was added to
the signal when using method A. SNR 20 is considered to be a
good signal in image processing. The signal is clearly superior to
the noise and therefore similar compared to the original signal,
and the differences between the original signal and the noisy
signal are small (the red graphs). As more noise is added,
the original signal gets more and more altered, and the noise
has a severe impact and differences are hard to ignore, particu-
larly when looking at data from method A. In Fig. 6, the results
of the reconstructed images are depicted as more noise was
added to the signal, and clearly show the emerging issue with
method A. Method A might be a valid approach as long as the
system contains a minimum of noise. Noise levels will be re-
duced to a minimum if during the illumination of the object
the inverted patterns are displayed [27]. It is reasonable to dis-
play each inverted pattern successively after the corresponding
positive pattern (and not after all N 2 positive patterns).
Therefore, it is highly recommended to use method B to im-
prove imaging quality, especially while working in low light

Fig. 2. Test image with four grayscale values used during simula-
tion.

Fig. 3. Results of N 2 � 16 patterns measuring the test object dis-
played in Fig. 2. The first row indicates the measurements performed
with only positive (�1 and 0) patterns where only positive values are
measured (intensity values above each pattern). The second row shows
the received measurements from positive and inverted (�1 and −1)
patterns and the corresponding intensity values.

Fig. 4. (a) Intensity data of 16 positive Hadamard patterns.
(b) Data of (a) after the mean is subtracted. (c) Data of 16 positive
and inverted Hadamard patterns. (d) The difference between the
simulated data of (b) and the real data of (c).

Fig. 5. Three simulations where different Gaussian white noise is
added to the original signal [graphs 4(b) and 4(c)]. The first row dis-
plays the original signal with the added noise (blue) and the difference
to the original signal (red) for method A. The bottom row shows the
original signal with added noise for method B (green) and the differ-
ence from the original signal (red). Please note the difference in the
y-axis scale.
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conditions as on a single photon level where photomultiplier
tubes are used [28], and where high acquisition rates are desired
and hence the integration time of the detector is kept to a mini-
mum as during real-time imaging. One additional method to
increase the acquisition time and therefore lower the imaging
time could be the division of the used spatial illumination into
sub-patterns and hence the parallel detection of the sub-pattern
intensities using an array of detectors [29].

B. Full Resolution Image Reconstruction
To obtain a single image, one begins by displaying of all pat-
terns. The software reads the data of both detectors, which is
automatically followed by the subtraction of both received data
sets and the immediate reconstruction of the image of the
object.

Figure 7 depicts the image reconstruction of an object using
N � 32 patterns, and the imaging time is t � 0.045 s. The
figure shows the comparison of a reconstructed image from
positive data received via d1 (on the left), the reconstructed
image from negative data received via d2 (in the center),
and the reconstructed image from intensityi, after the subtrac-
tion of the negative data of d2 from the positive data of d1. It
can be clearly seen that the image on the right side, (c), contains

less artifacts compared to the former images, especially when
one looks at the first column. Moreover, contrast is improved
too. This supports the necessity of displaying the pattern and
the inverted complements on a DMD to avoid a loss in image
quality.

Some might argue that the left image in Fig. 7 is already a
suitable reconstruction, and we remind those that these results
were obtained in a low noise environment and the SNR was
high. Working in a noisy environment or on a single photon
level would not lead to such a great quality of the reconstructed
image [15,28,30–32], as shown in the previous paragraph. In
addition, while using two detectors tinkering with the 1st pixel
can be avoided, a common task during single pixel imaging.

While the reconstructed images for N � 32 and 64 are dis-
played in an instant, images with higher resolution N ≥ 128
take a few seconds to be reconstructed due to the amount
of data that needs to be processed. In Figs. 8(a)–8(c) experi-
mental results for different N s are shown. Due to the use of
a second detector, it is also possible to create an N � 256
image as now all required patterns (N 2 � 65536) can be
loaded into the memory of the DMD. Additionally, images
in Figs. 8(d) and 8(e) are reconstructed with the maximum pos-
sible resolution where one pixel in the pattern resembles one
pixel on the DMD, giving a resolution of 1 px ≃ 13.68 μm.

In Table 1, a comparison of theoretical and experimentally
obtained FPS are shown for various resolutions. For higher res-
olution, a larger number of patterns have to be displayed and
therefore a decrease in FPS is obtained. The flaw of high-
resolution real-time imaging is the gap between theoretical
and experimentally obtained FPS. This is because of the expo-
nential growth of data, which needs to be acquired and processed
by the computer before the imaging procedure can be repeated.

The presented system configuration clearly exhibits
improvement to real-time video rate. Videos for N � 32
(Visualization 1), 64 (Visualization 2) and 128
(Visualization 3) can be found online in the supplementary
section, using the same experimental system but direct illumi-
nation of the object (a measurement tape). Compared to

Fig. 6. Reconstructed images after noise is introduced. The top row
shows the reconstructed images using method A, and the bottom row
when method B is used. The numbers below the images show the
correlation coefficient compared to the reference image in Fig. 2, based
on Eq. (3) of [19].

Fig. 7. Reconstructed images for N � 32, up-sampled to
256 × 256 px. (a) Positive detector. (b) Negative detector.
(c) Reconstruction after the negative data is subtracted from the pos-
itive data, resulting in a higher contrast image with fewer artifacts.
Correlation coefficient below the images compared to (c).

Fig. 8. Image reconstruction for (a) N � 64, (b) N � 128, and
(c) N � 256. All images are up-scaled to 256 × 256 px (except images
with N � 256). Imaging time is indicated. Images (d) and (e) are
reconstructed with maximum resolution, 1 px ≃ 13.68 μm.
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systems where one single detector is employed and the patterns
are displayed with inverse complements, the FPS is doubled.

For N ≥ 128, the framerate is increased but the anticipated
doubling is not reached. As an example, for N � 256, the
illumination time to display all required patterns was around
3 s, though the image reconstruction takes around 22 s, which
results in an overall FPS of 0.04. This is because of the vast
amount of data that needs to be processed to reconstruct
the full resolution image, even though the calculations are very
basic, the software is optimized to make use of the full potential
of the available CPU.

C. Adaptive Image Reconstruction
A technique to further improve the video framerate is to reduce
the number of patterns after intensity measurements of a
complete set of patterns (N 2) are performed. The intensity
measurements are subsequently sorted by means of the highest
response. From there, only a fraction of highly responsive
patterns are chosen. This is known as adaptive imaging or
evolutionary compressive sensing [16,34]. Subsequently, this
set of patterns (which can be significant smaller than N 2) is
displayed, the intensities measured, and an image recon-
structed. The reduced number of patterns can be sufficient to
reconstruct an object in great detail [16,22] as shown in Fig. 9.
Ideally, when the number of patterns is reduced and the imag-
ing time is decreased, higher video framerates should be
obtained. In our study this is only partially the case, as image
reconstruction time for N � 256 stays almost constant during
a 50% reduction, as seen in Table 2. In the future, more power-
ful hardware (GPU instead of CPU) might decrease computa-
tional time and therefore higher real-time video framerates will
be possible. Nevertheless, as soon as the area of interest changes
(or the object moves), this approach will stop working because
each object or scene has an individual set of high responsive

patterns and therefore the intensities of a complete set of
patterns need to be measured prior to lowering the number
of patterns again.

4. CONCLUSION

The use of two detectors in a single pixel imaging related system
halves the pattern projection time while maintaining image
quality and therefore doubling the framerate for real-time video
imaging. Further increase can be accomplished by using
adaptive imaging techniques. Moreover, the proposed method
enables computational images for a resolution of 256 × 256 px
within 2.88 s. The proposed solution significantly decreases
the overall imaging duration within a multiplexed illumination
system when used in a configuration where the object is imaged
onto the DMD plane. If one implements the imaging path
vice versa by imaging the DMD plane onto the object
(“forward scheme”) this approach has limitations. In that kind
of configuration, it would not be possible to employ a second
detector to measure the inverted intensity at the same time.
However, there might be other solutions, like using two light
sources with different polarization or wavelength, both illumi-
nating the DMD from opposite directions and their beams are
combined on the object plane. This would mean, the object is
always completely illuminated since one half of the pixels are
the positive 1s of one source and at the same time the negative
1s of the other source and vice versa. Two detectors could
collect the reflected light with different polarization or wave-
length filters. One would have to tinker with the alignment
on the object plane where both beams need to be combined
precisely without the slightest overlapping.

However, customized hardware, especially a squared micro
mirror array (e.g., 512 × 512 px) could first increase the DMD
framerate, which would increase the real-time video framerate
by lowering the overall imaging time. Second, it would avoid
the contamination of the second detector with light coming

Table 1. Comparison of Theoretical and Experimentally Obtained FPS

N 32 64 128 256

Number of pattern: 2 detectors (1 detector) 1024 (2048) 4096 (8192) 16384 (32768) 65536 (-)
Time to display: N 2 (2 × N 2) pattern in s 0.045 (0.090) 0.180 (0.360) 0.721 (1.442) 2.882 (-)
Theoretical FPSa 2 detectors (1 detector) 22.19 (11.10) 5.55 (2.77) 1.39 (0.69) 0.35 (0.17)
Experimental FPS 22.19 5.50 0.75 0.04
FPS obtained by others, using 1 detector 10 [15,16,33] 2.5 [15,16,33,34] 0.5 [19] -

aWithout computational reconstruction time, solely displaying time of the patterns with maximum DMD frequency.

Fig. 9. Adaptive imaging results for N � 256. t is the time, which
is needed to display the percentage of pattern. The numbers in the last
row are the correlation coefficients compared to the first image
(100%).

Table 2. T(heoretical) Versus E(xperimental) FPS Results
While Applying Adaptive Imaging Using Two Detectors

N � 32 N � 64 N � 128 N � 256

% T E T E T E T E

100 22.19 22.19 5.55 5.50 1.38 0.75 0.34 0.04
75 29.59 29.59 7.40 7.34 1.84 1.03 0.45 0.05
50 44.39 44.39 11.10 11.10 2.77 1.53 0.69 0.07
25 88.78 88.78 22.19 22.12 5.55 3.01 1.38 0.18
10 220 220 55.49 55.45 13.87 7.34 3.46 0.46
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from the background pixels outside the Hadamard area point-
ing toward detector two.

These type of two detector approach could have some
potential benefit in applications where speed is a requirement
as in retinal imaging [35].
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