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Abstract Nonlinear Laser Scanning Microscopy (NLSM) techniques have been demon-

strated in the past two decades as powerful imaging tools for disease diagnostics (DD).

Currently, in most DD related experiments the interpretation of NLSM data sets is per-

formed by trained specialists. Such approaches are both time consuming and prone to

errors due to inter- and intra-observer discrepancies. The Bag-of-Features (BoF) paradigm

has demonstrated its potential usefulness with respect to automated data classification in

the frame of multiple experiments, but its intersections with the field of NLSM are at this

moment scarce, to say the least. In this paper we review recent progress on DD using

NLSM, and discuss necessary steps and potential future perspectives for merging NLSM

and BoF to achieve complex frameworks for automated DD with high sensitivity and

specificity.
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1 Introduction

Nonlinear Laser Scanning Microscopy (NLSM) techniques represent powerful tools for

investigating tissue morphology, functionality and biochemical composition with high

spatial and temporal resolution. Such techniques can be used for probing tissue specific

endogenous signals, thus allowing for various medically relevant aspects to be assessed in

the frame of both ex- and in-vivo assays. Moreover, in-vivo diagnostics and tumor

delineation using NLSM can be done in tandem with laser surgery, which holds significant

potential for accelerating surgical interventions for tumor resection, and for enhancing

overall quality aspects of the medical act. To date, the analysis and interpretation of NLSM

data sets have been successfully performed manually in a large number of experiments

aimed at disease diagnostics, however it cannot be neglected that such manual evaluation

approaches are both time consuming and prone to errors due to inter- and intra-observer

discrepancies.

The Bag-of-Features (BoF) paradigm (O’Hara and Draper 2011), inspired from the Bag-

of-Words (BoW) representation used in textual information retrieval, has been introduced

to the field of computer vision about a decade ago. Since then, BoF approaches became

well-established in the field because of their simplicity and performance. The potential of

BoF methods for biomedical classification problems has been demonstrated so far in

several experiments, but the methods reported to date rely mainly on spatial intensity

information such as image gradients.

In this paper we recall the main principles behind four NLSM techniques that have been

demonstrated as powerful tools for tissue characterization: Second Harmonic Generation

Microsopy (SHG), Two-Photon Excitation Fluorescence Microscopy (TPEF), two-photon

Fluorescence Lifetime Imaging (FLIM) and Coherent Anti-Stokes Raman Microscopy

(CARS), we then briefly review important recent progress in tissue characterization by

these four techniques, and discuss potential future steps and perspectives for merging

NLSM and BoF in the purpose of achieving complex frameworks for automated DD with

high sensitivity and specificity.

2 Contrast mechanisms of SHG, TPEF, FLIM and CARS and their
significance for cell and tissue characterization

The field of NLSM is comprised of various techniques that rely on different contrast

mechanisms. Depending on the contrast mechanism that is being used, complementary

information categories can be investigated (even simultaneously). For example, Second

Harmonic Generation Microscopy (Gauderon et al. 2000), represents a NLSM technique

based on a nonlinear non-resonant and coherent process that has been demonstrated as a

superb tool for imaging molecules with non-centrosymetric structure, which exhibit a

nonvanishing second-order susceptibility tensor v(2). Such molecules generate under the

influence of an external electric field a nonlinear optical signal at exactly half the wave-

length of the excitation source, which can be easily separated from the excitation light by

using low-pass or band-pass filters positioned in front of the detector. Because this phe-

nomenon occurs only in the focal volume, same as in the case of all other NLSM tech-

niques, optical sectioning represents an inherent feature. One of the fundamental

applications of SHG with respect to disease diagnostics (DD) consists in collagen imaging

(Chen et al. 2012), which represents the main structural protein in the extracellular matrix
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of animal tissues. Investigating collagen distribution with SHG in tissues enables a precise

and non-invasive assessment of extracellular matrix modifications, which represent a

hallmark of a wide range of pathologies, including cancer (Bonnans et al. 2014; Lu et al.

2012).

A different NLSM technique, Two-Photon Excitation Fluorescence Microscopy (So

et al. 2000) is based on the nonlinear resonant and incoherent process that involves the

simultaneous absorption of two photons whose combined energy is sufficient to induce an

electronic transition to an excited electronic state. Excited by these two photons, a fluo-

rophore acts in the same way as if excited by only one photon, emitting a single photon

whose wavelength is only determined by its intrinsic characteristics, such as fluorophore

type, chemical structure, etc. TPEF can thus be used for imaging various endogenous

fluorophores such as nicotinamide adenine dinucleotide (NADH), flavins, tryptophan,

elastin, melanin, lipofuscin, and others. Such possibilities offered by TPEF hold significant

potential for DD as these make possible the non-invasive assessment of tissular infor-

mation such as cell morphology, size variation of cell nuclei, blood vessel hyperplasia, or

inflammatory reaction related aspects, which all represent indicators with significant

importance for DD.

The advantages offered by TPEF can be exploited as well for time-resolved imaging

in fluorescence lifetime imaging (FLIM) implementations that rely on tunable mode-

locked solid state lasers providing picosecond or femtosecond pulses. FLIM enables the

spatial distribution mapping of the excited state lifetimes corresponding to endogenous

or exogenous fluorophores, the physical phenomena measured being the fluorescence

intensity decay following excitation. Measuring the lifetime of a fluorescent signal, in

addition to its intensity, allows monitoring the biophysical environments of the

responsible fluorophore, independent of its concentration or of the excitation intensity.

Therefore, although the contrast mechanisms of both FLIM and TPEF are based on

fluorescence, these two can be regarded as complementary techniques because the FLIM

signals depend on factors that define the local environment of the interrogated fluo-

rophore such as ion and oxygen concentrations, temperature, pH, or on additional

aspects such as its conformational or binding state (Suhling et al. 2015). Thus, the same

fluorophore can exhibit different emission lifetimes depending on its environment, an

aspect that has been successfully exploited to date in the frame of multiple DD oriented

experiments which exploit metabolic contrast.

Another NLSM technique that holds high potential for DD is Coherent anti-Stokes

Raman scattering (CARS) microscopy, which generates images based on the vibrational

signatures of molecules, independent of their fluorescent properties or their centrosimetry.

For the CARS phenomenon to occur, a target molecule needs to be irradiated using two

short-pulse laser beams, the pump beam and the Stokes beam, with frequencies tuned such

that their difference corresponds to a vibration of the target. When this illumination sce-

nario takes place, coherently vibrating molecules in the probe volume scatter the probe

beam, resulting in a coherent signal with a higher frequency than that of the probe beam

(Pezacki et al. 2011). CARS is thus sensitive to the same vibrational signatures of mole-

cules which are of interest in Raman spectroscopy, typically the nuclear vibrations of

chemical bonds, but the signals exploited in CARS have much higher intensities than those

originating from spontaneous Raman scattering allowing fast-rate imaging. This contrast

mechanism makes CARS a perfect tool for probing specific molecular information in

tissues corresponding to a wide range of bio-molecular compounds relevant for DD, such

as lipids (Baenke et al. 2013).
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3 Disease diagnostics using Nonlinear Laser Scanning Microscopy: recent
examples

NLSM techniques can be used to collect non-invasively, in a label free manner, 2D images

that recapitulate essential histology features that are typically used by pathologists for

tissue characterization. An important study that successfully demonstrated this aspect has

been conducted by (Makino et al. 2012), who employed combined TPEF/SHG imaging for

creating an atlas of images of the entire gastrointestinal tract of a mouse, from the

esophagus to the anus, including the organs of the hepatobiliary system and pancreas. In

our opinion, this experiment represents a landmark study as the authors demonstrate an

excellent correlation between TPEF/SHG images and histopathology images collected with

classical optical microscopy on excised and Hematoxylyn and Eosin (H&E) stained tissue.

Besides 2D intensity information with high potential for morphological analysis, TPEF and

SHG are capable to yield additional information categories specific to the underlying

contrast mechanism. A prominent example in this regard consists in the recent experiment

reported by (Tokarz et al. 2015), where the authors use a combination of polarization

related metrics to gather additional information on the extracellular matrix collagen,

complementary to the concentration and spatial distribution measures. More precisely, the

authors use a polarization-in$ polarization-out SHG microscopy approach to characterize

classical papillary thyroid carcinoma and follicular variant papillary thyroid carcinoma.

For this, the authors generate a support image set by using different combinations of

orientation angles by rotating a half-wave plate placed directly in front of the excitation

objective lens, and a polarizer (analyzer) located after the collection objective before the

detector, resulting in excitation and SHG polarization orientation ranges between -90� and
90�. Based on this support image set the authors calculate the second-order nonlinear

optical susceptibility tensor component ratio, v(2)ZZZ0/v(2)ZXX0, and the degree of linear

polarization (DOLP) observing significant changes of these two metrics between tumorous

and non-tumorous thyroid tissues. Tokarz et al. (2015) conclude that increased v(2)ZZZ0/
v(2)ZXX0 most likely indicates a greater collagen fibril disorder, which correlates well with

the decreased DOLP values obtained for cancerous thyroid tissue. Collagen orientation was

assessed also in the case of H&E stained samples, which are typically used for

histopathological exam, by (Birk et al. 2014). The authors of this experiment have studied

sixteen H&E stained slides from colon biopsies through SHG imaging, four for each of the

following categories: normal colonic mucosa, polyps with low grade dysplasia, polyps with

high grade dysplasia, and malignant tumors. The investigation of the H&E slides was done

in two stages. In a first one the SHG reflective intensity was assessed for each slide by

dividing the sum of all intensities by the total number of pixels, while in the second stage

the anisotropy parameter was calculated by: b = (I|| - I?)/(I|| ? 2I?) where I|| and I?
correspond to SHG intensity detected when the analyzing polarizer is oriented parallel and

perpendicular to the laser polarization. The results of the work performed by (Birk et al.

2014) demonstrate that SHG can be successfully used not only for assessing disease

relevant tissue configurations in label-free samples but also in H&E samples that are

routinely used for histopathology exam. Thus SHG could play an important role in con-

solidating the diagnostic provided by a trained pathologist. More precisely, the experiment

demonstrated that a significantly higher SHG intensity is observed for the H&E stained

slides corresponding to malignant samples which could be linked to higher collagen

content. Moreover, a higher anisotropy value was observed for the case of H&E stained

slides corresponding to the normal tissue in comparison to the cases of low grade dysplasia
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and high grade dysplasia (for which the lowest anisotropy value was recorded). These

results are linked to the alignment of the collagen fibers which is progressively disturbed

along cancer progression, as shown also in (Tokarz et al. 2015). In another recent study that

highlights the importance of NLSM with respect to DD, (Li et al. 2015) evaluate the

feasibility of using combined TPEF/SHG imaging for distinguishing the layers of the

bowel wall, including mucosa, submucosa, muscularis propria, and serosa, whose label-

free investigation either in-vivo or ex-vivo holds as well significant potential for under-

standing and diagnosing colorectal cancers. In their experiment, the authors analyzed

freshly excised tissue with nonlinear spectral analysis of TPEF signals, and conducted as

well a detailed morphological analysis using SHG and TPEF intensity data. Their results

demonstrate that the nonlinear spectral analysis of TPEF spectra can lead to the correct

identification of the constituents of colorectal tissues and to label-freely identify the four-

layer microstructures of fresh colorectal tissue. Colorectal tissue has been investigated by

NLSM also in an experiment presented by (Li et al. 2016), where the authors investigate

normal tissue and tissue affected by rectal adenoma-carcinoma excised from patients

enrolled in a study at the Fujian Medical University Union Hospital. In this experiment, the

main focus of attention was given to the thorough investigation of the collagen changes

that occur in cancerous tissue in the course of neoadjuvant treatment consisting in

radiochemotherapy. Modifications in the collagen structure of colorectal tissue were

quantitatively described using an intensity ratio of SHG over TPEF signals, which was

obtained by measuring the nonlinear emission spectrum. Their quantitative analysis

showed that the intensity ratio of SHG to TPEF in desmoplasia and in stromal fibrosis is

consistently increased in comparison to the case of normal tissue. Moreover, the collagen

orientation index in the case of normal tissue was found to be much higher than the one

calculated for tissue affected by desmoplasia and stromal fibrosis, which represents direct

evidence that the collagen orientation gradually becomes more disordered during the

development of rectal carcinoma undergoing neoadjuvant treatment. Colorectal tissue was

also investigated by NLSM by (Cicchi et al. 2013) in a work in which the authors dis-

criminate between healthy mucosa, adenomatous polyp, and adenocarcinoma in ex-vivo

fresh colorectal biopsies using TPEF data sets. Cellular/nuclear ratios, as well as asym-

metry aspects, were assessed based on TPEF intensity maps in the frame of an extensive

morphological characterization experiment while functional differences were observed in

terms of metabolic activity by measuring the relative abundance of NADH and flavin

adenine dinucleotide (FAD) through the selective acquisition of their fluorescence. The

ratio between these two endogenous metabolic biomarkers, also known as the metabolic

redox ratio, plays a key role in the detection and assessments of cellular metabolism which

is an important indicator for cancer diagnostics, as it is believed that increased cellular

metabolism in cancer cells may cause the route of energy production to shift from the

oxidative phosphorylation pathway to the glycolytic pathway (Gulledge and Dewhirst

1995). For calculating the metabolic redox ratio, (Cicchi et al. 2013) use two excitation

wavelengths and two corresponding spectral windows for detection, in order to minimize

the cross-talk between NADH and FAD fluorescence signals. Based on this approach, they

observe an altered metabolic condition not only in adenocarcinomas but also in adeno-

matous polyps, demonstrating that the altered metabolism, precursor of cancer develop-

ment, can be detected optically. The same metabolic redox ratio was also used by (Thomas

et al. 2014) to investigate the cellular metabolism of epidermal cells. Their experiment led

to the conclusion that the NADH/FAD ratio in epidermal cells is higher in skin with

preclinical hyperplasia and clinically visible early skin tumors, when compared to normal

skin. This represents an important discovery with respect to cancer diagnostics, as it leads
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to the conclusions that elevated cellular metabolism in the early preclinical stage of

hyperplasia can be regarded as an important indicator for the addressed pathology.

Metabolic contrast was also considered by (Chakraborty et al. 2016) who performed an

experiment meant to differentiate and quantify the amounts of free and protein-bound

NADH and FAD with respect to monitoring the cellular energetics in Parkinson’s disease

(PD). More precisely, the authors used two-photon FLIM for functional mapping of cel-

lular redox states in normal and pathological neuronal cells, based on a protocol that serves

as a model system of PD in laboratory conditions. NADH/NAD? and FADH2/FAD, redox

ratios of neuronal cells, were evaluated in terms of the ratios of free-to-protein-bound

NADH and FAD. The performed experiments brought solid experimental proof that FLIM

data derived from interrogating the two considered autofluorescent coenzymes via the

proposed methodology can be used to differentiate between normal and diseased cells, as

FLIM based metrics turned out to be good indicators with respect to metabolic activity and

changes in metabolic state of neuronal cells. In conclusion to their experiment, the authors

claimed that similar FLIM based studies focused on tissue model or in-vivo animal models

could significantly advance our current understanding of PD causes and progression, and

could also lead to novel label-free PD diagnostic tools, which could operate in-vivo. A

study that represents a consistent step forward towards developing brain oriented in-vivo

diagnostic methodologies based on fluorescence data consists in the recent milestone

experiment reported by (Kantelhardt et al. 2016), where consecutive patients with cranial

tumors were enrolled in a study that incorporated TPEF and FLIM imaging of ex-vivo

tumor samples, but also intraoperative investigations using a cutting-edge MPTflexTM

Multiphoton Tomograph (JenLab GmbH, Germany) based on a tuneable NIR femtosecond

laser. In their experiments focused on the investigation of ex-vivo high grade glioma

tissues, the authors found TPEF images to show a chaotic architecture of tumor cells, as

could also be observed with conventional histology. FLIM provided complementary

information demonstrating image areas of long fluorescent lifetime (up to 2000 ps)

interspersed with image areas of shorter fluorescence lifetime (1000 ps), these latter cor-

responding to necrotic tissue. TPEF investigations of ex-vivo glioblastoma (malignant

glioma) tissues demonstrated images in which typical cytological features of the consid-

ered pathology, such as hypercellularity, pleomorphism, necrosis or microvascular pro-

liferation were identified; FLIM images allowed the differentiation of necrotic regions,

with absent nuclei, which showed a specifically low fluorescent lifetime. Further on,

human glioblastoma was also imaged in-situ, by positioning the imaging system over the

craniotomy after it was sterilized. The intraoperative in-situ TPEF intensity and FLIM

images collected on solid tumor tissue resembled the images collected ex-vivo, showing

heterogeneous cells with loss of any structured histo-architecture, which is typical for high

grade glioma. FLIM images collected on the intact arachnoid membrane/pia covering the

tumor revealed longer fluorescence lifetimes in comparison to those obtained in the solid

tumor. As a conclusion to their experiment, the authors point out that combined TPEF &

FLIM imaging holds potential to be used for intraoperative optical biopsy and guidance of

resection in neurosurgery. In a different study aimed at FLIM imaging of human tissues,

(Giacomelli et al. 2015) demonstrate what they claim to be the highest resolution TPEF-

FLIM images generated in freshly-excised human tissue. These were collected with their

setup which exploits direct temporal sampling of fluorescent decays phase-locked to a high

harmonic of mode-locked laser repetition rate (DTS-FLIM). Their DTS-FLIM investiga-

tions performed on healthy tissue specimens originated from partial mastectomy demon-

strated consistent lifetime ratios for normal fat and stroma within widely separated areas of

the same specimen, but also across different specimens. According to the authors, these
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results indicate that the lifetimes of the fluorescent components of normal breast tissue are

well regulated, and that the lifetime ratio increases with cellularity. Increased cellularity,

which takes places in breast carcinoma or ductal carcinoma in-situ, could therefore result

in tumor specific FLIM signatures, thus exhibiting significant potential for the in vivo

diagnostics of such pathologies.

In recent years CARS was also demonstrated in multiple experiments as an important

tool for DD (Kong et al. 2015; Schie et al. 2015). The potential of CARS with respect to

DD stands in its capabilities of collecting signals that arise from lipidic C-H bond stretches.

The roles of lipids in biology are diverse and hold deep implications for a wide range of

pathologies (Baenke et al. 2013; Krahmer et al. 2013; Nordestgaard and Varbo 2014).

Dysregulations in lipid synthesis or metabolism can results in diseases such as diabetes,

neurodegeneration, cancers and many others. A recent example on how CARS data col-

lected on the CH-stretching region can be used for DD consists in the experiment reported

in (Huang et al. 2015). There, CARS data was used for discriminating between gastroc-

nemius tissue biopsies collected from healthy patients and from patients diagnosed with

Peripheral Artery Disease (PAD), a common circulatory problem which can ultimately

lead to leg dysfunction. Sets of spectra from 12 tissue specimens corresponding to 12

different patients (4 healthy, 4 with moderate PAD and 4 with severe PAD) were recorded,

and after a pre-processing step meant to minimize multiplicative error, a Principal Com-

ponent Analysis Scheme was performed to reduce the data dimensions to a smaller number

of Principal Components that incorporate the most the important information from the

spectra. Further on, a classification method known as principal component—discriminant

function analysis (PC-DFA) (Hamasha et al. 2013) was applied for classifying the col-

lected spectra. This led to achieving an overall classification accuracy of *79 %, *7 %

lower compared to the case when spontaneous Raman spectra were used in a similar

classification scenario. Further on, in order to evaluate the sensitivity and specificity of the

proposed methodology for classification of CARS spectra, these were divided into

‘‘healthy’’ and ‘‘diseased’’ classes. In this binary classification scenario the PC-DFA

framework based on CARS data proved to be very sensitive (*95 %) on identification of

disease severity, which indicates that future efforts in this direction could lead to a valuable

tool for clinical diagnostics of PAD. Less than a decade ago, CARS was demonstrated for

the first time as a useful tool for imaging unstained brain tissue (Evans et al. 2007). Since

then, many other experiments continuously consolidated the idea that CARS, either by

itself or in combination with other optical techniques, can make possible the in-vivo

diagnostic of various brain related pathologies. For example, in the experiment of (Uck-

ermann et al. 2014) different human tumors were induced in an orthotopic mouse model

and imaged along with biopsies collected from human patients using a CARS configuration

tuned to probe vibrational signatures of lipids. Among many of the important results

reported in this study, the authors observed that in both mouse model and in human

biopsies glioblastoma tumors were characterized by CARS signal intensities lower than

those corresponding to healthy tissues. In both considered cases, CARS intensities col-

lected for tumor, infiltration zone and normal tissue were found to fall in separated ranges,

allowing thus a precise delineation of tumor borders, which is extremely important with

respect to the success of the medical act aimed to surgically remove the pathologic tissue in

its entirety, thus minimizing the risk of recidive. We end this mini-review oriented towards

highlighting recent experiments that stand as direct proof of the potential that NLSM

techniques hold with respect to DD, by providing a representative example on the sig-

nificant value exhibited by CARS also in clinical settings. In an experiment reported by

(Breunig et al. 2013) CARS data (together with TPEF and SHG data) were collected in-
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vivo from the forearms of male and female volunteers and patients at the at the Charite

Hospital in Berlin using an adapted variant of the DermaInspect system (JenLab GmbH.,

Germany). A comparison of TPEF/SHG intensity data to CARS data revealed that the lipid

distribution imaged in-vivo by CARS on healthy and dysplastic tissues does not merely

replicate the cellular structure of the tissular layer but provides additional information of

pathological relevance. All these experiments represent convincing evidence for the huge

potential that NLSM techniques hold with respect to DD. This considerable potential can

be amplified by combining NLSM data acquisition with computer vision and other

machine intelligence techniques to accelerate the speed at which analysis tasks are per-

formed, but also to generate outputs that are not biased by human subjectivity and error.

4 Combining the Bag-of-Features paradigm and Nonlinear Laser
Scanning Microscopy for automated diseases diagnostics

The BoF paradigm (O’Hara and Draper 2011) has been used to date in a wide range of

image classification methods and scenarios, e.g. (Lazebnik et al. 2006; Cao et al. 2010; Xu

et al. 2010; Zhou et al. 2013; Eweiwi et al. 2015; Nanni and Melucci 2016). BoF has its

origins in the BoW text categorization methods used for document classification. In such

BoW approaches, a document is classified as belonging to a particular category based on a

normalized histogram of word counts. BoF methods, also known as Bag-of-Visual-Words,

adapt this text categorization approach to a visual categorization one by replacing the

dictionary of textual words with a dictionary of visual ones, usually referred to as ‘‘visual

features’’. A typical BoF method, schematically illustrated in Fig. 1, requires the assig-

nation of a BoF representation to an image, which consists in a histogram that indicates the

number of occurrences of the visual words that take part in a dictionary in the respective

image. The dictionary (a.k.a. codebook) can be either assembled manually so as to include

relevant terms with respect to the approached classification problem, or can be built

automatically by running a clustering algorithm over a large set of visual features in order

to divide them into distinct groups and to identify the representative of each group (e.g.

cluster mean). Given a novel training or test image, visual features are detected in it and

assigning them their nearest matching terms from the visual vocabulary results in a nor-

malized histogram of the quantized features detected in the image. Based on such BoF

representations (a.k.a term vector), a target image can be classified as belonging to a

specific class by comparing its term vector to the term vectors of images included apriori in

training classes. Such comparisons are typically performed in an automatic fashion, using

different types of classifiers such as k-Nearest Neighbor (k-NN) classifiers, Support Vector

Machines (SVM), etc.

A first experiment to exploit the versatility of the BoF paradigm for the classification of

NLSM data sets was aimed at liver fibrosis diagnostic in the case of a Wistar rat model

using TPEF data sets collected ex-vivo by scanning the liver surface (Stanciu et al. 2014).

This experiment is aligned to the general trend of BoF methods aimed at biomedical image

classification problems, which consists in using image features based on spatial intensity

information (Caicedo et al. 2009; Tamaki et al. 2013; Sadek et al. 2015). In this regard, the

Scale Invariant Feature Transform (SIFT) (Lowe 2004) and adapted variants are currently

considered as default choices for implementing BoF frameworks aimed at classification of

image data sets because of their efficiency in detecting image regions of high invariance to

affine transformations (a.k.a keypoints), and in describing these using robust descriptors. In
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SIFT, this is achieved by constructing a keypoint descriptor which is a histogram repre-

sentation that combines local gradient orientations and magnitudes from a certain neigh-

borhood around a keypoint. More precisely, the SIFT descriptor is in fact a 3D histogram

of gradient location and orientation, where location is quantized into a 4 9 4 location grid

and the gradient angle is quantized into 8 orientations, one for each of the cardinal

directions. The resulting descriptor, which represents the ‘‘image feature’’ (or ‘‘visual

word’’) in SIFT based BoF approaches, is a normalized vector with the dimension of 128

elements. SIFT, and other local feature descriptors such as SURF (Bay et al. 2008), HOG

(Dalal and Triggs 2005), BRISK (Leutenegger et al. 2011), ORB (Rublee et al. 2011) or

FREAK (Alahi et al. 2012), do a great job at processing spatial intensity information in a

BoF-friendly manner, but the great majority of such techniques are developed by the

computer vision community taking as reference the specifics of natural images. These

techniques can be of course used in association with image data originating from any other

source than a digital camera, e.g. microscopes or medical imaging instruments, but this is

done at the cost of unpredictable performance due to image content specifics that differ

from those characteristic to natural images. For example, in two previous experiments

(Stanciu et al. 2010; Stanciu et al. 2011) it was shown that the detection and matching of

SIFT and SURF features is sensitive to image content modifications related to the

adjustment of typical Laser Scanning Microscopy (LSM) acquisition parameters, such as

pinhole aperture, photomultiplier gain or laser beam power. Moreover, in (Stanciu et al.

Fig. 1 A typical BoF framework for image classification [adapted from (Stanciu et al. 2014)]. A codebook
feature space is created by extracting image features (usually at fixed grid locations) in a set of images
dedicated to vocabulary building. A clustering algorithm can be used to partition the resulted feature space
into k regions and to identify the centroids of these regions, which will represent the codebook terms. The
codebook (a.k.a. dictionary) allows for BoF representations, term vectors, to be assigned to training and test
images. The term vector is a histogram that indicates the number of occurrences of the codebook terms in an
image. An image is classified as belonging to a specific class by assigning a term vector to it, and running
this term vector through a classifier that compares it with term vectors assembled for images with ground-
truth tagging, which constitute the training classes. Example images provided for vocabulary building,
training and test in this example represent images collected by SHG on pig cornea
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2013) it was shown that image deconvolution, which is routinely used in combination with

laser scanning microscopies for eliminating unwanted contributions of the point spread

function, affect the matching of gradient based local feature descriptors. All these represent

direct evidence that the application of feature detection/description techniques developed

for general use to LSM images, although straightforward, raises a series of concerns with

respect to the robustness and consistency of the results. In order to address such issues,

more efforts are required for either adjusting popular computer vision techniques devel-

oped for natural images so that these take into account specific properties of LSM images,

or for developing completely novel methods for local feature detection/description that are

tailored to the specifics of LSM imaging data. Moreover, as recalled by the brief review of

recent progress for DD using NLSM provided in Sect. 3, NLSM data sets host not only

morphology related information available as 2D image data but also other information

categories that are equally important for DD. Exploiting for classification purposes only 2D

image data with BoF strategies that rely solely on image features such as SIFT, SURF,

FREAK or others, leaves out important additional content harbored in additional infor-

mation categories, leading thus to an incomplete exploitation of available data. In our view,

important steps that are required to address this issue consist in the development of novel

strategies to extract BoF-friendly data features from NLSM information categories com-

plementary to imaging data, which at this moment represents an unexplored domain. This

would play a very important role with respect to the better penetration of BoF in the realm

of NLSM data classification. Among such NLSM information categories that should be

considered in novel pattern recognition, content modeling and machine intelligence

approaches, fluorescence emission spectra, fluorescence lifetime spectra, TPEF/SHG signal

ratio, SHG dependence on polarization or CARS spectra are noteworthy candidates to be

taken into account. Features extracted from these categories could play important roles in

DD oriented classification scenarios based on the BoF paradigm, a claim that we make

based on what has been discussed in Sects. 2 and 3. With respect to classification of

fluorescence or CARS spectra, strategies similar to the ‘‘Bag of Peaks’’ method (Brelstaff

et al. 2009), where the authors characterize nuclear magnetic resonance traces on the basis

of the occurrences of particular peaks in the collected data sets, could represent solid

solutions. Also, BoF strategies developed for Music Information Retrieval, e.g. (Fu et al.

2011; Nanni et al. 2016) seem to embed as well many concepts useful for exploitation of

NLSM data. For example, Bag-of-Frames approaches, such as ones discussed in (Au-

couturier et al. 2007), rely on audio pattern recognition by representing audio sequences as

a statistical distribution of contained local spectral features. Modalities of detecting and

modeling spectral features relevant for audio analysis rely on processing 1D data

sequences, which is also the topic of interest when it comes to NLSM information cate-

gories such as fluorescence emission spectra, fluorescence lifetime spectra or CARS

spectra. Thus, placing efforts on identifying concepts from the realm of audio data clas-

sification that could find application to NLSM data classification could turn out to be very

valuable, since in this area of audio recognition a huge volume of work has taken place so

far. Another important step that we also consider important with respect to the approached

subject consists in the development of novel BoF strategies for exploiting in parallel

NLSM data features based on different information categories. Such different categories

could be either multiple 2D information categories, multiple 1D information categories, or

mixed 1D and 2D categories. In this regard two types of strategies for exploiting in parallel

multiple feature classes associated to multiple information categories were briefly pro-

posed in (Stanciu et al. 2015), one based on the Multiple Dictionary BoF (a.k.a MDBoW)

model (Aly et al. 2011) and a second one based on running in parallel independent BoF
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frameworks for different information categories embedded in the same NLSM data set, and

merging the results using machine learning methods for multiple expert decision, e.g.

(Raykar et al. 2009). In our view such combined approaches could represent elegant

solutions for automatically classifying complex NLSM data sets in the purpose of diag-

nosing a wide range of pathologies with high sensitivity and specificity.

5 Conclusions

NLSM data sets host multiple information categories whose importance for DD has been

demonstrated in a wide range of experiments during the past two decades. Novel auto-

mated strategies for NLSM data classification based on the BoF paradigm could play a

key-role in aiding or even replacing classical approaches for DD based on morphological

interpretation of tissue by standard histopathology. For developing such strategies a con-

certed effort is required for developing novel feature extraction and description methods

tailored to the specifics of various NLSM information categories, such as fluorescence

emission spectra, fluorescence lifetime spectra, TPEF/SHG ratio, SHG intensity depen-

dence on polarization, CARS spectra, etc. In this effort an intense collaboration between

scientists conducting research in high resolution imaging, optics, spectroscopy, computer

vision, machine learning and statistical analysis will be crucial. Methods for automated

NLSM data classification yielded by such multidisciplinary collaborations could play an

important role with respect to the sustainability of healthcare systems across the world by

improving DD in terms of speed and accuracy.

Acknowledgments The presented work was partially supported by the PN-II-RU-TE-2014-4-1803 and PN-
II-PT-PCCA-2011-3.2-1162 Research Grants, funded by the Romanian Executive Agency for Higher
Education, Research, Development and Innovation Funding (UEFISCDI). The corresponding author
acknowledges as well the financial support of the SOP HRD, financed from the European Social Fund and
the Romanian Government under the contract number POSDRU/159/1.5/S/137390/. The contribution of
J.M. Bueno was supported by the Spanish SEIDI through the research grants FIS2013-41237-R and
FIS2015-71933-REDT.

References

Alahi, A., Ortiz, R., Vandergheynst, P.: Freak: fast retina keypoint. In: 2012 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 510–517. IEEE (2012)

Aly, M., Munich, M., Perona, P.: Multiple dictionaries for bag of Words Large Scale Image Search. In:
IEEE International Conference on Image Processing (ICIP) (2011)

Aucouturier, J.-J., Defreville, B., Pachet, F.: The bag-of-frames approach to audio pattern recognition: a
sufficient model for urban soundscapes but not for polyphonic music. J. Acoust. Soc. Am. 122(2),
881–891 (2007)

Baenke, F., Peck, B., Miess, H., Schulze, A.: Hooked on fat: the role of lipid synthesis in cancer metabolism
and tumour development. Dis. Models Mech. 6(6), 1353–1363 (2013)

Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (SURF). Comput. Vis. Image
Underst. 110(3), 346–359 (2008)

Birk, J.W., Tadros, M., Moezardalan, K., Nadyarnykh, O., Forouhar, F., Anderson, J., Campagnola, P.:
Second harmonic generation imaging distinguishes both high-grade dysplasia and cancer from normal
colonic mucosa. Dig. Dis. Sci. 59(7), 1529–1534 (2014)

Bonnans, C., Chou, J., Werb, Z.: Remodelling the extracellular matrix in development and disease. Nat.
Rev. Mol. Cell Biol. 15(12), 786–801 (2014)

Brelstaff, G., Bicego, M., Culeddu, N., Chessa, M.: Bag of peaks: interpretation of nmr spectrometry.
Bioinformatics 25(2), 258–264 (2009)

Perspectives on combining Nonlinear Laser Scanning… Page 11 of 13  320 

123
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