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Abstract

Monochromatic ocular aberrations in 108 eyes of a normal young population (n ¼ 59) were studied. The wave-front aberration
were obtained under natural conditions using a near-infrared Shack–Hartmann wave-front sensor. For this population and a 5 mm

pupil, more than 99% of the root-mean square wave-front error is contained in the first four orders of a Zernike expansion and

about 91% corresponds only to the second order. Comparison of wave-fronts aberrations from right and left eye in 35 subjects,

showed a good correlation between most of the second- and third-order terms and a slight (but not clear) tendency for mirror

symmetry between eyes. � 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The ocular wave-front aberration (OWA) is normally
represented as the departure, from a perfect plane wave,
of the wave-front generated by the light that leaves the
eye coming from a point source focused on the fovea.
The OWA provides useful information about the eye’s
imaging abilities in monochromatic light. From the es-
timates of the OWA (Charman, 1991), one can compute
both the eye’s point spread function and the modulation
transfer function (Goodman, 1996).
The OWA was first measured by Smirnov (1961)

using a vernier alignment technique. The cross-cylinder
aberroscope is another older technique for measuring
the OWA (Howland & Howland, 1976). More recently,
a number of other methods for measuring ocular aber-
rations have been proposed. Among these are: the
objective aberroscope (L�oopez-Gil & Howland, 1999;
Walsh, Charman, & Howland, 1984); the spatially re-
solved refractometer (Webb, Penney, & Thompson,
1992); computations from retinal images (Artal, Iglesias,
L�oopez-Gil, & Green, 1995; Iglesias, Berrio, & Artal,
1998); and the Shack–Hartmann (S–H) sensors (Liang,

Grimm, Goelz, & Bille, 1994; Liang & Williams, 1997;
Prieto, Vargas-Mart�ıın, Goelz, & Artal, 2000). Recent
improvements of the S–H sensor allow it to measure
the OWA several times a second (Hofer, Artal, Singer,
Aragon, & Williams, 2001a). This has allowed a closed-
loop correction of the OWA in the living eye (Fern�aan-
dez, Iglesias, & Artal, 2001; Hofer et al., 2001b). These
new S–H techniques, until recently laboratory proto-
types, are currently being incorporated into clinical in-
struments (Mrochen, Kaemmerer, & Seiler, 2001) and
therefore the number of eyes on which the OWA has
been measured has increased dramatically in the last
years. The new instruments allow one to obtain data of
the OWA in a large population (hundreds of eyes) in
relatively short period of time (Bradley, Hong, Thibos,
Cheng, & Miller, 2001; Porter, Guirao, Cox, & Wil-
liams, 2001). The interest of these studies is to establish
the range of aberrations in different normal populations.
Other laboratories have also recently published re-

sults of OWA measurements in relatively large popula-
tion of normal subjects. Porter et al. (2001), studied a
population covering a wide range of ages, and Bradley
et al. (2001), measured a young population under cyclo-
pegia. In the present communication, we present OWA
measurements obtained in a population of university stu-
dents (20–30 years old) under natural viewing conditions
without optical correction.
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2. Methods

The measurements of the OWA’s in the population
were performed with a near-infrared S–H sensor. A
schematic diagram of the set-up used is in Fig. 1.
A super-luminiscent diode (SLD), partially colli-

mated and emitting at 784 nm with a spectral bandwidth
of 44 nm, produced a beacon source on the retina. The
light reflected from the retina was used to measure the
OWA. The eye’s pupil was conjugate with mirror M2 by
means of L1 and L2 and with the microlenses array by
means of lenses L3 and L4. Between L1 and L2 an optical
subsystem consisting of two pairs of mirrors (M3–M6)
were placed. This subsystem was only used to test the
defocus measurements performances of the system (see
below). A CCD camera, Dalsa CA-D4, with a pixel size
of 12 lm was placed in the focal plane of the microlens
array to record the S–H images. A He–Ne laser (L)
emitting in the visible range (633 nm) was used together
with a removable mirror (RM) for alignment.
Although the low coherence of the SLD helped to

partially avoid speckle in the S–H images, this is still
present with the exposure time (500 ms) typically used.
The residual speckle could be removed by using a
spinning mirror M2 (Arag�oon, L�oopez-Gil, & Artal, 1999)
that scans and de-scans the beam before and after the

light reaches the retina (similar to the strategy suggested
by Hofer et al. (2001a)). In order to have a large dy-
namic range in measuring aberrations, we used an array
of microlenses with short focal length (f 0 ¼ 6:3 mm).
This has three advantages. First, it avoided the use of
the scanning mirror (M2 does not need to spin) because
speckle plays a small role in detecting the centroid.
Second, it allowed accurate measurements with defocus
up to �9 D. Third, it increases the signal to noise ratio
of the S–H images. As an example, Fig. 2 shows two
S–H images obtained with the same exposure time
(500ms) in the same subject but with two different mi-
crolens focal lengths (40 and 6.3 mm). Note the increase
in contrast obtained by decreasing the focal length.
The corneal reflex of the SLD can be seen in one of

the S–H images (Fig. 2b) and is concentrated on a small
area of the S–H image. This reflex affected only to a few
number of spots that are not included in the computa-
tions of the OWA. Because of the short focal length
used, small errors in positioning of the microlenses have
large affects on the aberration (Pfund, Lindlein, &
Schwider, 1998). The impact of the microlenses mis-
alignment is eliminated by using a reference image
during processing. The reference image was recorded by
placing a diffuser between mirrors M5 and M6, a posi-
tion conjugate with the microlenses focal plane (CCD

Fig. 1. Experimental set-up. L, He–Ne laser (632.8 nm); M1–M6, mirrors; RM, removable mirror; BS, beam splitter; SLD, super-luminiscent infrared

laser diode (784 nm); L1–L4 achromatic lenses; S–H, Shack–Hartmann sensor (microlens arrayþ CCD camera).
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plane). In addition, a robust sub-pixel centroiding al-
gorithm was used (see Prieto et al., 2000 for further
details).
To calibrate the sensor we measured a series of pre-

cisely known induced amounts of defocus and spherical
aberration. Defocus was introduced by displacing the
optical subsystem mentioned before. In particular, for
a pupil diameter of 5 mm, the increase of 1 mm of
the optical path between lenses L1 and L2 (both with a
20 cm focal length) theoretically changes the value of the
defocus Zernike coefficient (Z02 ) by 0.045 lm, corre-
sponding to 0.050 D of defocus. Fig. 3 shows the cali-
bration results for defocus. The line fitted in Fig. 3 had a
slope of 0.047 lm/mm (R ¼ 0:999), close to the expected
value (0.045 lm/mm). That is, for every diopter of de-
focus generated by the optical subsystem, we measured
1.05 D. We introduced phase plates with known spher-
ical aberration (L�oopez-Gil, Howland, Howland, Char-
man, & Applegate, 1998), in particular, 0.028 and
�0.028 lm for a 5 mm pupil diameter. We measured
values of 0.021 and �0.022 lm, for each lens respec-
tively.

We measured the OWA in both eyes of most of the 59
subjects (108 eyes). The subjects age ranged from 20 to
30 years old, with a mean value of 24� 3 (SD) years. All
subjects were students at Murcia University with normal
vision and without any known ocular pathology. All the
volunteer subjects signed an informed consent after the
nature and all possible consequences of the study had
been explained.
The irradiance on the cornea was lower than 27 lW/

cm2 during a typical exposure duration of 5 s (10 frames
at 500 ms/frame). This is approximately two orders of
magnitude less than the maximum permissible exposure
time for continuous viewing for this wavelength, ac-
cording to the American National Standards (ANSI
Z136.1, 1993). For each eye, 10 S–H images were re-
corded under natural viewing conditions with a fixation
target at the infinity. The wave-front aberrations were
calculated from the last frame in the series, except when
there was a blink at the very last moment. The OWA
were represented with a Zernike polynomials expansion
(Noll, 1976) up to fourth, fifth, sixth, seventh and eighth
order for 3, 4, 5, 6 and 7 mm pupil diameters, respec-
tively. Although a very dim room ambient light was
used, in a few subjects we could not process the images
for pupil diameter larger than 5 mm because the subjects
natural small pupil diameter.

3. Results

Fig. 4 shows the mean value of every Zernike term for
all the subjects measured using a pupil of 5 mm in di-
ameter.
The results show a large (relative to the mean) disper-

sion in all Zernike coefficients. Myopic defocus (Z02 ) and
astigmatism ‘‘with the rule’’ (Z22 ) were the dominant ab-
errations, which also exhibited the greatest inter-subject
variability. For every Zernike term beyond second

Fig. 2. S–H images obtained from the same eye with microlenses with focal length of (a) 40 mm and (b) 6.3 mm.

Fig. 3. Defocus calibration.
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order, the mean value for all the subjects measured was
lower than 0.03 lm. For pupils of 3, 4, 5, 6 and 7 mm,
the calculated mean total root mean squared (excluding
piston and tilts) of the wave-front (total RMS), were
0.53, 0.94, 1.49, 2.2 and 2.9 lm, respectively. Fig. 5
shows the mean value of each Zernike coefficient for
three different pupil diameters (3, 5 and 7 mm).
In order to know the weight of each Zernike term in

the variance of the OWA, we computed a percentage
factor, cj, as:

c2j
P20

i¼3 c
2
j

� 100

where single indexing scheme, cj, of the OSA-standard
Zernike coefficient notation is used for clarity (Thibos,
Applegate, Schwiegerling, & Webb, 2000). The value in
the denominator represents the variance of the OWA
obtained from the third (piston and tilt coefficients were
not included) to 20th Zernike coefficient, corresponding
to the end of the fifth-order Zernike expansion. The

values of those percentages are represented in Fig. 6,
computed from pupil diameters of 3, 5 and 7 mm.
Table 1 represents the average total RMS for three

different pupil sizes (diameters of 3, 5 and 7 mm), as well
as the percentages calculated for each Zernike order.
Thus, low-order aberration is represented by second-
order Zernike coefficients with a suffix index from 3 to 5
(corresponding to defocus and astigmatism). High-order
aberrations correspond to coefficients with higher in-
dexes. In particular, index form 6 to 9 for third order,
from 10 to 14 for fourth order and 15 to 20 for the fifth
order (Thibos et al., 2000).
We also studied the relation among Zernike coeffi-

cients in both eyes of each subject. A total of 49 pairs
of eyes were measured. However, due to the fact that
measurements were obtained under natural conditions
without any kind of cycloplegia, data for a 7 mm pupil
where only taken in 35 pairs. We present the data of
those 35 pairs of eyes in Fig. 7. Values of right and left
eyes have been represented in the X and Y-axes, re-
spectively. A linear regression coefficient (R) was com-
puted for each Zernike term for all the subject analyzed.
Values are shown in Table 2.

Fig. 4. Mean and standard deviation for each term of the Zernike

expansion up to the fifth order. Number in the X-axis represents the j-

index related to each Zernike term. The inserted small figure shows the

values of higher-order terms with a different scale.

Fig. 5. Mean value of each term of the Zernike expansion up to the

fifth order for a pupil diameter of 3 mm (open bars), 5 mm (gray bars)

and 7 mm (black bars). Numbers in the X-axis represent the j-index

related to each Zernike term.

Fig. 6. Percentage of the total variance (excluding piston and prisms)

of each Zernike term for a pupil diameter of 3 mm (� � �), 5 mm (- - -)
and 7 mm (—). Number in the X-axis represents the j-index related to

each Zernike term.

Table 1

Impact of each Zernike order on the total RMS for three different

pupil sizes

3 mm 5 mm 7 mm

Total RMS 0.5255 lm 1.4901 lm 2.9240 lm
Second order 97.3% 90.8% 86.2%

Third order 2.5% 6.4% 8.0%

Fourth order 0.2% 2.6% 3.9%

Fifth order 0.2% 1.5%

Percentages were obtained by averaging the percentage of each subject

for each coefficient and regrouping by orders. No fifth-order fitting was

done for a 3 mm pupil diameter due to the lacked of data.
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In general, second-order terms and third-order
spherical aberration were found to be well correlated in
both eyes. In the case of the astigmatism (Z�2

2 ), we found
a small correlation (R ¼ �0:2) between both eyes, while
the correlations for astigmatism with and without the
rule is much higher (R > 0:9).
Besides third-order spherical aberration, for high-

order aberrations, the higher correlation was found
for coma, being in general small for the rest of Zer-
nike terms. Correlation between eyes were significant

(p < 0:05) for most of the second- and third-order co-
efficients (see Table 2).

4. Conclusions and discussion

We measured the OWA in a young population of
University students by using a near-infrared aberrome-
ter (S–H type). The mean values and standard deviation
(SD) of the RMS for a pupil size of 5 mm were 1.49 and
1.32 lm, respectively. For a 5 mm pupil, the 99.8% of
the total RMS was contained in a expansion up to the
fourth order. This indicates that most of the wave-front
aberration is well represented using only the first 15th
Zernike polynomial terms in the case of small or me-
dium pupil sizes.
Second-order, myopic defocus (Z02 > 0) and astigma-

tism with the rule (Z22 < 0) were found to be the domi-
nant aberrations, with a huge inter-subject variability.
The mean value for those two coefficients for a five-pupil
radius was 1.14 and �0.27 lm with SD 1.44 and 0.30
lm, respectively.
Bradley et al. (2001) and Porter et al. (2001) have also

observed a high inter-subject variability. Moreover, the
percentages of RMS for different orders reported for
their two groups were similar to what was found in this
study. In particular, Porter and collaborators found
that, for a 5.7 mm pupil, 92.7% and 98.6% of the total
RMS is in the first two and three orders, respectively
(Porter et al., 2001). In the present study, we obtained
values of 90.8% and 97.2% in the first two and three
orders respectively for a 5 mm pupil, and 86.2% and
94.2% for a 7 mm pupil. The small differences could due
to the fact that there is a 17 years in the mean ages of the
two populations with the fact that higher-order aber-
rations increase with age (Guirao et al., 1999). The dif-
ferences are smaller when comparing our results with the
young corrected group (26.1 years in average) studied by
Bradley et al. (2001). In that study, the authors found
that, for a 6 mm pupil, the 99% of the total RMS is
contained in the first fourth orders. This value is very
similar to this study: 99.8% and 98.1% for 5 and 7 mm
pupil, respectively (see Table 1).
As is well known the impact of high-order aberra-

tions increased with pupil size. More precisely, we found
an increase from 2.7% to 13.8% for pupil size of 3–7
mm. The change in the values of the total RMS with
pupil size grew with approximately the second power of
the pupil radius. That is, there is a direct relation be-
tween total RMS and the pupil area. Fig. 8 presents the
total RMS obtained for different pupil radius. The data
has been fitted by a quadratic curve and had a regression
coefficient R2 ¼ 0:999. This result is not surprising tak-
ing into account that most of the aberration is due to the
second order (with a square radius dependency). How-
ever, the fit to a quadratic might not be so good in other

Fig. 7. Correlation between right (X-axis) and left (Y-axis) eye of a 7

mm pupil diameter, for defocus (a), astigmatism (Z22 ) (b), and third
order spherical aberration (c). Each point represents a subject.
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populations, for instance older subjects (Guirao et al.,
1999) or pathological eyes (L�oopez-Gil, Mar�ıın, Castej�oon-
Moch�oon, Benito, & Artal, 2001) were higher-order ab-
errations are larger.
For a 7 mm pupil, second and third order are better

correlated between right and left eyes, except for oblique
astigmatism (Z�2

2 ) (R ¼ �0:2, p ¼ 0:25) and the trian-
gular astigmatism represented by the ninth Zernike
polynomial (R ¼ �0:16, p ¼ 0:34). Other Zernike terms
are not so well correlated except for third-order spher-
ical aberration (R ¼ 0:77, p ¼ 0:00) and the 14th Zernike
polynomial (R ¼ 0:56, p ¼ 0:00). Half of Zernike terms
are significantly correlated for p ¼ 0:02 (9 out of 18
Zernike terms), while for p ¼ 0:01, eight out of 18 terms
are significantly correlated.
A rotation of the angular coordinates (/) of 180� on

the OWA will change the sign of the coefficients corre-
sponding to the Zernike polynomial which depend on

the cosððnþ 1Þ/Þ and sinðn/Þ, with n even. In Table 2,
those coefficient are: Z�2

2 , Z
1
3 , Z

3
3 , Z

�4
4 , Z

�2
4 , Z

1
5 , Z

3
5 and Z

5
5 .

Thus, a mirror (chiral) symmetry of the OWA between
eyes, as suggested by Liang and Williams (1997) and
studied by Porter et al. (2001), would produce a negative
slope value for those coefficients in Table 2. The results
presented in Table 2, show five out of eighth of those
coefficients with a negative value. However, some of
them had high p values and low regression coefficient
(R), specially for coefficients corresponding to fifth order
in which aberrations are very small.
The apparently lack of symmetry for the oblique

astigmatism term (Z�2
2 ) can be explained by comparing

the astigmatism amplitude and axis between right and
left eyes computed from both astigmatism Zernike terms
(Z22 and Z�2

2 ). That comparison shows that symmetry
on axis direction increased with astigmatism module. In
addition, we did not find a negative slope value for the
third-order Zernike coefficient corresponding to coma
(Z13 ) where the correlation between eyes was significant
(p ¼ 0:00). Thus, the population study do not show a
clear mirror symmetry of the OWA between right and
left eyes, as has been recently reported before by Porter
et al. (2001), but rather a slight tendency in this direc-
tion.
In summary, this paper describes the statistical results

of wave aberration measurements made on the eyes of a
young student population for several different pupil
sizes. This kind of study will have an impact in clinical
ophthalmology. With the increasing number of patients
of all ages who are receiving refractive surgical proce-
dures, it is important to establish aberration standards

Table 2

Relation of Zernike coefficients between right and left eye for a 7 mm pupil diameter

Order Zernike term Polynomial R Slope p-Value

Second order Z�2
2 (C3) q2 sin 2/ �0.2 �0.18 0.25

Z02 (C4) 2q2 � 1 0.92 0.99 0.00

Z22 (C5) q2 cos 2/ 0.91 0.81 0.00

Third order Z�3
3 (C6) q3 sin 3/ 0.63 0.49 0.00

Z�1
3 (C7) ð3q3 � 2qÞ sin/ 0.65 0.49 0.00

Z13 (C8) ð3q3 � 2qÞ cos/ 0.6 0.63 0.00

Z33 (C9) q3 cos 3/ �0.16 �0.20 0.34

Fourth order Z�4
4 (C10) q4 sin 4/ 0.15 0.22 0.38

Z�2
4 (C11) ð4q4 � 3q2Þ sin 2/ �0.09 �0.09 0.60

Z04 (C12) ð6q4 � 6q2 þ 1Þ 0.77 0.70 0.00

Z24 (C13) ð4q4 � 3q2Þ cos 2/ 0.40 0.40 0.02

Z44 (C14) q4 cos 4/ 0.56 0.98 0.00

Fifth order Z�5
5 (C15) q5 sin 5/ 0.44 0.58 0.01

Z�3
5 (C16) ð5q5 � 4q3Þ sin 3/ �0.11 �0.10 0.53

Z�1
5 (C17) ð10q5 � 12q3 þ 2qÞ sin/ �0.03 �0.02 0.87

Z15 (C18) ð10q5 � 12q3 þ 2qÞ cos/ �0.19 �0.23 0.27

Z35 (C19) ð5q5 � 4q3Þ cos 3/ 0.21 0.43 0.23

Z55 (C20) q5 cos 5/ �0.06 �0.05 0.75

Regression coefficients and slope values are obtained after fitting to a straight line (see in the text). Third column does not include normalization

coefficient.

Fig. 8. Relation between pupil radius and the total RMS. Data points

has been fitted by a quadratic function.

1616 J. Francisco Castej�oon-Moch�oon et al. / Vision Research 42 (2002) 1611–1617



that are indicative of normal individuals. This will be a
useful tool to evaluate the optical and visual outcomes
in refractive surgery.
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