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Statistical description of wave-front aberration in
the human eye
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The wave aberration of the human eye has been measured by means of a Hartmann—Shack wave-front sensor

in a population of normal subjects.

The set of data has been used to compute the phase distribution, the

power spectrum, and the structure function for the average eye to analyze the statistics of the ocular aberration

considered as a phase screen.

The observed statistics fits the classical Kolmogorov model of a statistically

homogeneous medium. These results can be of use in understanding the average effect of aberrations on
the retinal image and can serve as a tool to analyze the consequences of ocular-aberration compensation by

adaptive optics, customized ophtalmic elements, or refractive surgery.

OCIS codes: 330.7310, 170.4460.

For more than two centuries, researches have been
interested in measuring the degradation of the retinal
image in the human eye beyond refractive errors.
The wave aberration (WA) function is the most con-
venient way of describing the performance of ocular
optics.! The use of compact and reliable wave-front
sensors?~* to determine the eye’s aberrations opens a
new way to understand the behavior of the eye as a
phase screen. It allows the measurements of a large
population for statistical analysis of the ocular optics.
In this Letter, we study the statistical properties of
the eye’s optics, which are assumed to be a phase
screen. This approach differs from those of previous
statistical studies that were based on the evaluation of
individual modes.”> We show that the eye behaves as a
statistically homogeneous medium, which follows a
Kolmogorov model of the power spectrum. Conse-
quently, light propagation through the eye resembles
propagation through other living tissues® or through
the atmosphere.” One can explain this effect by
considering the eye as being composed of structures
with dimensions ranging from possibly 100 nm to
millimeters (we denote these structures as the inner,
lyp, and the outer, L, scales of the eye, respectively).
This statistical description of the eye can be useful
for such tasks as estimating the averaged retinal
point-spread function, performing numerical simu-
lations of ocular-aberration compensation, studying
different strategies for refractive surgery, and the
development of contact or intraocular lenses.

A Hartmann-Shack (H-S) sensor was used to
measure the ocular WA. The apparatus is based on
another described in Ref. 4. A beam splitter is used
to combine an illumination channel, basically consist-
ing of a spatially filtered low-coherence laser diode
conjugate to the subject’s retina, and a measurement
channel, where the light emerging from the retinal
reflection is directed to a H-S sensor. This sensor is
composed of a microlens array that is conjugate to the
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subject’s pupil, with a CCD detector on its focal plane.
As a result, an image consisting of a series of spots
can be recorded. The displacement of each spot with
respect to its reference position is proportional to the
local slope of the wave front, and one can easily use
the displacement to obtain a modal expansion of the
WA. In our case, we use the Zernike circle polyno-
mials as the functional basis for this expansion. The
apparatus is completed with a system that controls
the pupil position and a fixation channel.

The main differences with respect to previous appa-
ratuses are the use of a low-coherence laser diode for
illumination and a short-focal-length lenslet array for
the H-S sensor. The first feature allows recording of
short-exposure frames without the speckle noise that is
present when a coherent source is used. The second
produces an increased dynamic range for our sensor
and a reduction of the retinal irradiance.

Theoretically, the WA should be expressed as a
weighted sum of Zernike polynomials® with infinite
terms:

o(r) =D a;Zi(r), (1)
=1

where a; are the coefficients of the corresponding
Zernike polynomials. In practice, only a finite num-
ber of terms are considered. On the one hand, the
expansion is truncated to a certain index k. Ulti-
mately, this truncation is imposed by the limited
number of sampling points on the pupil plane, but
it is well justified by the observed decrease in the
relative contribution of increasing-order components
to the ocular aberration, as was reported in Ref. 3.
On the other hand, our wave-front sensor is unable to
measure piston and tilt terms (Zernike polynomials
1-3). Furthermore, when one is analyzing the ocular
aberrations, it is usual to investigate the effects of
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high-order terms alone, which is done by cancellation
of the low-order Zernike coefficients. This is equiva-
lent to considering the system to be composed of the
eye and an ideal partial-correction system that per-
fectly compensates for the first j Zernike coefficients.
Since the Zernike polynomials are orthonormal over a
unit pupil, the residual wave-front distortion, defined
as the average variance of the wave-front surface,
can be calculated as a sum of squared Zernike co-
efficients. Zernike coefficients up to eighth order
(kB = 45) were measured in 84 healthy eyes over a
7-mm pupil. Measurements were carried out under
natural accommodation and pupil conditions, with
the fixation target at infinity. The subjects’ ages
ranged from 20 to 29 years. Retinal irradiance was
always several orders of magnitude below ANSI
standards. From the WA maps, the histogram of
phase values across pupil positions and subjects was
calculated. Once it is normalized, this histogram is
an estimate of the phase probability density and was
found to follow a zero-mean Gaussian distribution.
Figure 1 shows these results for two compensation
levels: j = 3, which means that piston, tip, and tilt
are compensated for, and j = 6, which means that the
first three modes, along with defocus and astigmatism,
are compensated for. Since the mean value of the
distribution is zero, it is fully described by its second
moment. Consequently, the power spectrum and
the structure function, defined as {{¢(r) — ¢ (x)]?),°
suffice to characterize light propagation through
the eye.

The experimental power spectra for two different
values of j are represented in Fig. 2. Their shape
resembles the Von Karman spectrum.” This kind of
spectrum corresponds to a statistically homogeneous
medium following the Kolmogorov theory, with phase
fluctuations produced by index inhomogeneities that
continuously range in size between two finite scales, [
(inner scale) and L, (outer scale). For frequencies be-
low the reciprocal of the outer scale, the Von Karman
spectrum is flat. Between this value and the recip-
rocal of the inner scale, it follows a —11/3 power law.
For frequencies above 1/1y, the Von Karman spectrum
vanishes.

The experimental power spectra in Fig. 2 are repre-
sented for only a limited range of spatial frequencies.
This range is imposed by the Zernike terms used
for expressing the WA in each case. Each power
spectrum presents a power-law zone that can be sat-
isfactorily fitted with a —11/3 exponent even though
noise is present. Furthermore, the low correction
spectrum remains flat for frequencies below 0.2 mm 1.
According to the Kolmogorov theory, the outer scale
of the index inhomogeneities can be calculated as the
reciprocal of this value, i.e., 5 mm. This result can-
not be checked with the high-order correction power
spectrum, since it is not well defined below 0.3 mm™!.
Similarly, the frequency range in which the low- and
high-order correction power spectra are defined is too
short in either case to allow determination of the in-
ner inhomogeneity scale. To increase this range, one
should use a higher number of coefficients, meaning
that a sensor with a higher number of subapertures

would be required. However, it does not seem feasible
to reach /y, even with a system that stretches current
technology to its limits.

It is important to determine whether the eye is a
statistically homogeneous medium. For this purpose,
we analyzed three parameters that characterize the
eye as a phase screen: the residual phase variance,
the coherence area, and the correlation length. The
first parameter can be directly obtained from the mea-
surements of the WA function. The other two are es-
timated from the structure function.

The radial evolution of the phase variance for
two different degrees of compensation is shown in
Fig. 3. From the behavior of this variance in the
low-compensation case, the phase could be thought to
be a statistically inhomogeneous process. However,
it has been shown that low-order Zernike compensa-
tion induces this kind of behavior in a statistically
homogeneous medium, since it limits the range of
phase fluctuation in the center of the pupil more
severely.!®! Further compensation quickly leads
to a recovery of homogeneity (as a rule of thumb,
third-order compensation is enough). This result is
in agreement with the results in Fig. 3, in which the
curve corresponding to 15 corrected modes shows that
the phase variance is no longer a function of position
in the pupil plane.
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Fig. 1. Distribution of the phase across subjects and pupil
positions for a 7-mm pupil diameter, for two different levels
of compensation (thin curves, j = 3; thick curves, j = 6).
Solid curves, normalized experimental density functions;
dashed curves, Gaussian fits.
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Fig. 2. Power spectra for two different compensation
levels (thin solid curves, three modes corrected, thick solid
curves, ten modes corrected), compared with a —11/3
power law (thin dotted curves, three modes corrected;
thick dashed curve, ten modes corrected).
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Fig. 3. Radial evolution of the phase variance for two com-
pensation levels (solid curve, three modes corrected; dashed
curve, ten modes corrected).
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Fig. 4. Structure function calculated with concentric
circles of different diameter (d). The pupil diameter is
fixed (D = 7 mm), and the distance between points (Ar)
is in D units. Long-dashed curve, d = 0.9D; solid curve,
d = 0.7D; circles, d = 0.5D; short-dashed curve, d = 0.3D.

To check this point further, we evaluated the struc-
ture function corresponding to the case of 15 corrected
modes inside centered circular regions with radii
smaller than the pupil. Results for four increasing
radius zones are shown in Fig. 4. In all cases, the
structure function curve was found to be composed
of two parts: a power-law zone that saturates into
a noisy segment around a constant value. The sat-
uration value was always approximately equal to
twice the average phase variance, 2A;. The corre-
lation length, /., can be defined as the distance that
produces this transition in the structure function
behavior.!* In Fig. 4, it is shown that, for a fixed
compensation level, I, does not change radially. The
slope of the power-law zone can be related to a param-
eter, pg, which can be interpreted as the radius of the
coherence area in the pupil (analogous to the Fried
parameter in atmospheric phase screen analysis'').
For a statistically homogeneous medium, this slope is
independent on the pupil size. This can be the case
with the ocular WA after 15-mode compensation, since
the slope changes observed in Fig. 4 are small and can
probably be explained in terms of measurement noise.

To conclude, we have studied the statistics of the
eye as a phase screen from the experimental measure-
ment of the ocular WAs in a large population. Across
subjects and pupil locations, the phase-value behavior
was found to closely resemble a Gaussian distribution.
The phase power spectrum, the radial evolution of the
phase variance, and the structure function were calcu-
lated. Analysis of these functions strongly suggests
that the eye can be considered a statistically homoge-
neous medium following Kolmogorov theory with finite
outer and inner scales. A value of 5 mm was found
for the outer scale, whereas determination of the in-
ner scale is beyond the capabilities of our WA measure-
ment system. The analysis presented in this Letter
constitutes a first step toward the statistical charac-
terization of the image formation process in the eye
and how it is affected by partial aberration compensa-
tion. Furthermore, analysis of the structure function,
which will make possible a deeper knowledge of the
eye’s WA statistical behavior, could be of use for de-
signing ophthalmic or adaptive-optics-based elements
for high-order aberration correction, or in the improve-
ment of refractive surgery strategies.
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