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Abstract. A Mueller-matrix polarimeter in transmission mode using two electronically
controlled liquid-crystal variable retarders has been developed. Its design, theory and
calibration are described. Although liquid crystals have been proposed earlier, this paper is
focused on the process of the calculation of the Mueller matrix by a matrix-inversion method,
oriented to static systems and in vitro samples. By driving the retarders with appropriate
voltages, nine independent pairs of polarization states can be produced (incomplete
polarimetry), while the other additional seven pairs are obtained by placing two quarter-wave
plates (in the input and output optical paths respectively). This configuration allows extraction
of 16 independent measurements of intensity. The Mueller matrix of the sample is calculated
from them. The results of Mueller matrices for air, a linear polarizer and a quarter-wave plate
are presented. Additional polarization parameters such as retardation, ellipticity or degree of
polarization were also computed and some applications of the system are proposed.
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1. Introduction

Mueller-matrix polarimeters (or ellipsometers) have been
widely used to measure different polarization properties in
optical systems and samples [1–5]. Most of these systems
were based on fixed linear polarizers and rotating retarders,
both in the generator and analyser paths. They normally
used a Fourier analysis of the detected signal to obtain the
Mueller matrix of the media under study [6, 7]. Hauge [8]
reviewed the limitations of that kind of polarimeter and
studied the information that could be obtained. Some systems
only used rotating polarizers [9], but as they did not contain
compensating elements, the complete Mueller matrix could
not be obtained.

More efficient polarimetric systems have used electro-
optical modulators [10, 11], Pockels cells [12, 13] or
photoelastic modulators [14–18] instead of rotatory elements.
Azzam [19] developed a faster polarimeter, based on a
division-of-amplitude technique, in order to obtain the four
parameters of each Stokes vector simultaneously. This
system has recently been implemented [20–24].

Liquid-crystal (LC) devices are optically anisotropic me-
dia that act locally as a uniaxial retardation plate and exhibit
optical birefringence [25]. They produce different polariza-
tion states depending on the external applied voltage and
therefore can also be used in polarimeters [26–28]. These
voltage-controlled LC devices are being used in many differ-
ent applications ranging from optical rotators [29,30] or pro-
tection sensors [31], to wavefront corrector devices [32, 33].

Recently a Mueller-matrix imaging polarimeter [34]
using LCs adapted to an ophthalmoscopic double-pass
apparatus [35] has been proposed, in order to calculate
spatially resolved Mueller matrices of the human eye. In
this work the theoretical basis of that system is described:
a polarimeter using a pair of LC variable retarders (LCVR),
both in the input and output optical paths. As is well known
the first LCVR acts as a polarization-state generator (PSG)
and the second as a polarization-state analyser (PSA). For
a fixed position generator–analyser, only nine elements of
the Mueller matrix can be obtained; the other seven will be
accessible when two quarter-wave retarders (one behind the
PSG and other in front of the PSA) are introduced. In this
way, 16 intensities are recorded, each corresponding to a
different independent combination of states PSG–PSA. With
this set of intensities the Mueller matrix of the sample and its
polarization properties can be computed.

In section 2, a description of the experimental set-up is
presented. Details of the theory of the polarimeter are given
in section 3. The calibration of the LCVRs is described in
section 4. Some results are shown in section 5; a summary
and some conclusions are presented in section 6.

2. Experimental set-up: polarimeter in
transmission mode

Figure 1 shows a schematic diagram of the LCVR
polarimeter. The light source is a 633 nm He–Ne laser.
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Figure 1. Schematic diagram of the LCVR polarimeter in
transmission mode. P, polarizer; NDF, neutral density filter; BS,
pellicle beam splitter; D1 and D2, linear photodetectors; M,
microscope objective; O, pinhole; L1 and L2, lenses; AP, aperture;
LCVR1 and LCVR2, liquid-crystal variable retarders; RQWP1 and
RQWP2, removable quarter-wave plates.

Light passes through a polarizer (P) and a neutral density
filter (NDF). Part of the light is reflected in a pellicle beam
splitter (BS) and reaches a linear photodetector (D1) used
to measure reference intensities and correct the mean final
intensity, according to fluctuations of the source. The laser
beam is expanded by a microscope objective (M) and filtered
by a pinhole (O). A lens L1 (f ′

1 = 100 mm) collimates the
beam, the size of which is controlled by the aperture AP.
The first LCVR1 (linear polarizer followed by a LC cell)
acts as the PSG. A removable quarter-wave plate (RQWP1)

produces the fourth independent polarization state, as will be
shown in section 3. After passing through the sample, the
light enters the PSA. In the analyser path, another removable
quarter-wave plate (RQWP2) is placed in front of the second
LCVR2 (LC cell followed by a linear polarizer). A lens
L2 (f ′

2 = 100 mm) focuses the beam on a second linear
photodetector (D2). A PC controls the LCVRs and data
recorded by photodetectors.

3. Theory

Each LCVR consists of an horizontal linear polarizer (OX-
axis) in conjunction with a LC. The Stokes vector of the light
going into the first LC is (Ip, Ip, 0, 0)T . The Mueller matrix
of a LC with retardation δ, and azimuthal angle of the fast
axis α, is given by [36]:

Mα
δ =




1 0 0 0
0 c2 + s2 cos δ sc(1 − cos δ) −s sin δ

0 sc(1 − cos δ) s2 + c2 cos δ c sin δ

0 s sin δ −c sin δ cos δ




(1)
where c = cos 2α and s = sin 2α. Due to a fixed angle
between the principal axis of the linear polarizer and the fast
axis of the LC (horizontal and 45◦ apart, respectively), the
Stokes vector generated by the PSG is

SPSG =




S0

S1

S2

S3


 = Ip




1
cos δ(V )

0
sin δ(V )


 (2)

where δ(V ) is the retardation as a function of the applied
voltage. Since S2 is zero for any voltage, the azimuth of
the ellipse of polarization [37] is always horizontal and all
polarization states SPSG are placed along a single meridian
of the Poincaré sphere [38]. This means that, by driving the
LCVRs, only changes in the ellipticity of the generated states
are produced, as figure 2 shows.

δ=0
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Figure 2. Ellipses of polarization corresponding to states SPSG, as
a function of the voltage applied to the LC.

The Mueller matrix of the system M , transforms the
input Stokes vector SPSG into the output Stokes vector S ′.
This system changes the polarization state of the light and
possibly partially depolarizes it. In the PSA, the azimuthal
angle of the fast axis of the LC is −45◦ and the polarizer is
also horizontal. The resulting Mueller matrix of the PSA is

MPSA = M0
pol · M−45

δ′

= 1
2




1 cos δ′(V ′) 0 sin δ′(V ′)
1 cos δ′(V ′) 0 sin δ′(V ′)
0 0 0 0
0 0 0 0


 (3)

where V ′ is the external voltage applied to the second LC and
δ′, the retardation corresponding to this voltage. In summary,
every Stokes vector SPSG through the entire set-up becomes
SD, given by the simple matrix equation

SD = MPSA · M · SPSG (4)

where the first element of SD is the intensity of the light
reaching the photodetector [39] that can be written as:

ID = Ip

2
[m00 + m01 cos δ(V ) + m03 sin δ(V )]

+ [m10 + m11 cos δ(V ) + m13 sin δ(V )] cos δ′(V ′)
+ [m30 + m31 cos δ(V ) + m33 sin δ(V )] sin δ′(V ′). (5)

This expression of the intensity does not depend on the
time, but includes nine terms depending on the retardations of
LCVRs and the elements of the Mueller matrix of the sample.
This implies that at one time only nine elements (neither the
third row nor the third column) of the Mueller matrix can
be computed. Therefore, as every recorded intensity implies
the combination of nine elements, at least nine independent
equations are required to calculate those elements. A method
to infer the rest of the elements of the Mueller matrix M will
be described in the following.

To obtain the 16 elements of the Mueller matrix, four
independent polarization states in each unit (both PSG and
PSA) are needed. In mathematical terms, four 4 × 1 vectors
are independent if the determinant of the 4 × 4 matrix
composed by them is not (or even close to) zero. For
Stokes vectors, the largest possible value of this determinant
is 2 (total independence) and in that case, three vectors are
perpendicular to each other in the Poincaré sphere and the
fourth is orthogonal (opposite direction) to one of them.
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Because of the location of all SPSG in a single plane, only
three independent states of polarization can be produced (as
the PSA is similar due to its symmetrical arrangement). The
method used to obtain the fourth independent is based on the
use of two removable quarter-wave plates, one in the PSG
and other in the PSA. The effect of a quarter-wave plate is to
rotate the incident Stokes vector at an angle of 90◦ around its
fast axis in the counter-clockwise. The optimum azimuthal
angle of the plate was calculated and a value of zero was
obtained.

When inserting theλ/4 behind LCVR1, the Stokes vector
S

(λ/4)

PSG emerging from it will be

S
(λ/4)

PSG = M0
λ/4 · SPSG = t1 ·




1 0 0 0
0 1 0 0
0 0 0 1
0 0 −1 0


 · SPSG

= t1 · Ip




1
cos δ(V )

sin δ(V )

0


 (6)

where M0
λ/4 is the Mueller matrix of the plate and t1 its

transmittance (previously measured).
If t2 is the transmittance for the second λ/4, the Mueller

matrix for the PSA when inserting the plate in front of LCVR2

will be given by

M
(λ/4)

PSA = M0
pol · M−45

δ′ · M0
λ/4

= t2

2




1 cos δ′ − sin δ′ 0
1 cos δ′ − sin δ′ 0
0 0 0 0
0 0 0 0


 . (7)

Let MPSG and MPSA be the auxiliary 4 × 4 matrices for
both the PSG and the PSA:

MPSG =




1 1 1 1
cos δ1 cos δ2 cos δ3 cos δ4

0 0 0 sin δ4

sin δ1 sin δ2 sin δ3 0




MPSA =




1 cos δ′
1 0 sin δ′

1
1 cos δ′

2 0 sin δ′
2

1 cos δ′
3 0 sin δ′

3
1 cos δ′

4 − sin δ′
4 0




(8)

where MPSG is the matrix in which columns are the four
independent Stokes vectors SPSG (equations (2) and (6)), and
MPSA is the matrix with each row being the first row of every
MPSA (equations (3) and (7)). Although transmittances of
plates (t1 and t2) have been omitted in expression (8) in
order to understand the process more easily, they were always
included when experimental measurements were carried out.

In this way, retardations δi and δ′
i (i = 1, 2, 3, 4) of the

LCs associated to the largest values of the determinants of
auxiliary matrices of equation (8) must be calculated. Since,
after calibrating each LCVR (see section 4), both minimum
and maximum retardations are known, the eight required
retardations are computed. These values of retardation
for δ1, δ2, δ3, δ

′
1, δ

′
2 and δ′

3 produce polarization states that
are linear vertical (state 2), right circular (state 3) and
approximately linear horizontal (state 1). In addition, δ4 = δ3

and δ′
4 = δ′

3 were obtained.

1=L
H

R

45

V

3=C

2=L

4=L

Figure 3. Location on the Poincaré sphere of the four independent
polarization states. The effect of the quarter-wave plate is shown
by arrows. The numbers associated to every polarization state are:
state 1, linear horizontal (LH); state 2, linear vertical (LV); state 3,
right circular (CR) and state 4, 45◦ linear (L45).

Table 1. Values of determinants (absolute value) used by different
authors. The first one corresponds to our experimental setup.
Determinants of series 2, 3, 4 and 5 correspond to references 40,
41, 42 and 43, respectively. The largest possible value of the
determinant is 2.

Series det

1 1.8
2 0.5
3 1
4 1.4
5 2

In view of these results, placing the quarter-wave plate
(fast axis in horizontal position) behind the PSG, when right
circular light is emerging (δ3 = π/2) 45◦ linear light (state 4)
will be produced. The combination of this state 4 (in both
generator and analyser units) with states 1, 2 and 3 will
allow us to obtain the seven left PSG–PSA combinations
to calculate the rest of the elements of the Mueller matrix.
Figure 3 shows the location on the Poincaré sphere of the
four independent Stokes vectors.

In table 1 the absolute value of the determinant for this
work compared with that of others from the bibliography are
shown. The second row is the determinant resulting from
a rotatory polarimeter with equiangular increments of 22.5◦

given by Morgan et al [40]. The third determinant was used
by Pezzaniti and Chipman [41], Ambirajan and Look [42]
obtained the fourth value and Pelz et al [13] used the fifth.
The present determinant is lower than 2 because the state 1
does not correspond exactly to linear horizontal light due to
some properties of the LC cell (section 4). However, through
this work, state 1 will usually be called LH (assignment
corresponding to a linear horizontal state (see figure 3)).

The calculation of the complete Mueller matrix involves
16 independent equations of intensity measurements. With
the four independent states in every LCVR, 16 independent
PSG–PSA combinations termed by i–j (i, j = 1, 2, 3, 4)

are produced. Nine elements of the Mueller matrix can be
calculated at any one time and the rest result from the use of
the removable quarter-wave plates. There are 16 intensities
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distributed in four 4 × 1 flux-vectors ID(i) (i = 1, 2, 3, 4)

where a flux-vector corresponds to a fixed PSG state and four
PSA states. The relationship between every Stokes vector
S ′(i) going out of the sample and the final intensities is given
by (t2 has not been included):

ID(i) =




I
(1–1)
d

I
(1–2)
d

I
(1–3)
d

I
(1–4)
d


 = 1

2 · MPSA · S ′(i)

= 1
2




1 cos δ′
1 0 sin δ′

1
1 cos δ′

2 0 sin δ′
2

1 cos δ′
3 0 sin δ′

3
1 cos δ′

4 − sin δ′
4 0






S
′(i)
0

S
′(i)
1

S
′(i)
2

S
′(i)
3


 . (9)

The inversion of the last equation for every ID(i) yields
the four unknown Stokes vectors S ′(i). If MSOUT is the
auxiliary 4×4 matrix with its columns being the four Stokes
vectors S ′(i) (MSOUT = [S ′(1)S ′(2)S ′(3)S ′(4)]), the experimental
Mueller matrix of the sample can be obtained as a result of

M = MSOUT · (MPSG)−1 (10)

where MPSG is the auxiliary matrix of equation (8).

4. Calibration of the LCVRs

To measure accurately the elements of the Mueller matrix, an
independent calibration for every LCVR must be performed.
For this we need to know the relation between the voltage
applied to the LC and the retardation produced.

Once the two LCVRs were aligned in the straight-
through configuration, the calibration was made placing the
LC between crossed linear polarizers. Since a horizontal
linear polarizer is placed inside every LCVR, only one
external vertical polarizer is required (behind the PSG for
LCVR1 and in front of the PSA for LCVR2).

If Ip is the intensity of the light entering the LC, the
intensity reaching the detector when placing between crossed
linear polarizers is:

Icrossed = Ip sin2

(
δ

2

)
(11)

where δ is the retardation of the LC for each value of voltage.
Since Ip is known and Icrossed is measured, for every applied
voltage the retardation can be calculated as:

δ = 2 · a sin

(√
Icrossed

Ip

)
. (12)

In figure 4 the retardation of a LCVR is plotted versus
the external applied voltage. The input voltage is 0–5 V
and the basic cell of LC does not reach a zero retardation
state due to surface pinning effects from the alignment layer.
Even at high voltages a residual retardation is present. One
typical polarization state for the minimum retardation has
been SPSG(δmin) = (1, 0.98, 0, 0.19)T . At low voltages large
retardations can be obtained with small changes in the input
signal, although a large inertia is also present.

The time of response of these devices depends on several
parameters, including thickness of the LC layer, viscosity,
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Figure 4. Calibration data for one of the LCVRs.
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Figure 5. Theoretical and experimental intensities for each
PSG–PSA combination, with the air as a test sample in the
polarimeter.

temperature, nature of the drive voltage and the LC alignment
geometry. Times ranging from 0.75 to 0.90 ms were found
for the LCs used in the present work.

For a fixed wavelength, the transmittance of the LC
is uniform across the aperture and does not depend on the
voltage. In this case, variations were lower than 0.1%.

5. Results

In order to verify the reliability of the polarimeter, three
examples for test measurements of well-defined optical-
polarization components are shown in this section. These
experimental Mueller matrices provide the precision of the
set-up and the accuracy of the results.

5.1. Example 1: the air

The 4 × 4 identity matrix is the Mueller matrix of the air.
An example of experimental values obtained for this Mueller
matrix has been:

MAIR =




1 0.006 0.006 0.001
−0.007 1.003 0.014 0.006
0.002 −0.001 0.991 0.005

−0.002 0.002 0.001 0.999


 .

The comparison of this result with the ideal matrix,
shows a method to test the quality of the experimental
system. Systematic errors are similar to other results in the
literature [4,10–12]. Figure 5 shows the comparison between
theoretical and experimental intensities recorded for the air.
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Table 2. Parameters of polarization corresponding to experimental Mueller matrices of a quarter-wave-plate with its fast axis at
−45◦, 0◦, 30◦ and 90◦, 0◦ and 90◦ expected for ellipticity and retardation respectively.

−45◦ 0◦ 30◦ 90◦

Retardation 91.96 ± 0.70 91.74 ± 1.20 90.53 ± 1.42 92.67 ± 0.20
Azimuth −44.29 ± 0.17 0.24 ± 0.11 30.74 ± 0.23 87.89 ± 0.63
Ellipticity −2.05 ± 1.11 0.86 ± 0.44 3.59 ± 1.10 0.36 ± 0.07

5.2. Example 2: horizontal linear polarizer

The normalized Mueller matrix obtained for a linear polarizer
with its transmission axis in horizontal position was

M0◦
p =




1 1.013 0.018 −0.014
1.027 1.041 0.010 0.009
0.024 0.040 0.020 0.014

−0.021 −0.019 0.016 −0.024


 .

5.3. Example 3: a quarter-wave plate

In this last example the Mueller matrix for a quarter-wave
plate is presented. The azimuth of the fast axis of the retarder
was horizontal:

M0
λ/4 =




1 0.003 0.001 0.000
0.001 0.999 0.041 0.021

−0.012 −0.019 −0.042 0.999
0.003 0.044 −0.998 −0.041


 .

If it is supposed that the elements of the first column
and first row are not null because of small effects of
depolarization, the polar decomposition for non-depolarizing
optical systems [43] can be used to obtain the parameters
of polarization (92.41◦ for retardation, 0.33◦ for azimuth
and 0.86◦ for ellipticity were obtained). The value of
ellipticity indicates that the retarder is linear. The degree
of polarization [44] and the two principal coefficients of
transmission [43] are close to 1. The coefficients of
transmission show that the quarter-wave plate is a total
retarder without diattenuation [45].

Errors in elements of the Mueller matrices may be due
to slight misalignments of the different optical components,
imperfections and internal reflections in test samples or small
errors in the calibration of the LCVRs.

On the other hand, in table 2 values of parameters of
polarization for different angles of the fast axis of the plate
are shown. Each value is the average of three measurements
and errors represent the standard deviation.

6. Discussion and summary

The experimental set-up and operation of a polarimeter
consisting of a pair of LCVRs have been described. With
this configuration and driving properly the LCVRs, only nine
elements of the Mueller matrix of the sample can be obtained.
In this way, since the Stokes vectors are not completely
measured, incomplete polarimetry [1, 2] is involved. This
technique can be used when the complete Mueller matrix
is not needed, for instance, in the analysis of highly linear
birefringent samples with minuscule amounts of other forms
of polarization. In those cases, the system is usually known

as a polariscope. Some polariscopes using rotatory elements
and LCVRs have been recently proposed [46, 47].

However, a complete determination of the elements of
the Mueller matrix using LCVRs requires the use of two
additional removable quarter-wave plates. The intensities
recorded for each PSG–PSA combination only depend on the
retardation of the LCVRs and the elements of the Mueller
matrix of the sample. This Mueller matrix is obtained by
means of an easy matrix inversion method and a Fourier
analysis of the signal is not required.

As examples, results of experimental Mueller matrices
for the air, a linear polarizer and a quarter-wave plate have
been shown. From the accuracy of these optical elements
and the consideration of alignment errors, the error inherent
is estimated at 2–4%, depending on the Mueller-matrix
element.

Although it is well known that there are faster systems
than the present one (see the introduction to this paper),
the polarimetry using LCs has been successfully applied
to measure polarization properties of the human eye using
double-pass retinal images [35, 48].

Using LCVRs, errors caused by moving parts
unavoidable when using mechanical rotation (inertia with its
acceleration and brake times, misalignments of the signal
on the detector, etc), are eliminated. Precise rotation
stages, stepper motors and accessories such as a gearbox
are dispensable. To produce a large retardation, very high
voltages are not required. Different wavelengths can be used
by adjusting the voltages applied to the LCVRs to maintain
the optimum retardations.

On the other hand, for this arrangement there are
two main disadvantages: (1) a LC cannot generate four
independent polarization states and (2) the retardation
introduced by a LC is dependent on external factors (i.e.
temperature). To take this second fact into account, LCVRs
were calibrated just before carrying out measurements and
switched on for not more than 10 min. During that time,
changes in the plot voltage retardation were not found.

The present system allows us to obtain the polarization
properties of static transmission samples (i.e. inhomogeneous
films [49]) and it can also be applied to the analysis of some in
vitro biological elements [50]. In reflection mode it could be
used in the spatial resolution of substrate media and samples
with anisotropic layers [2], in the study of scattering effects
in rough surfaces [51] and to obtain important polarization
characteristics of in vitro samples [52].

Finally, with slight modifications (i.e. changing the
detector for a CCD camera in the recording state or
introducing a scanning unit), a Mueller-matrix imaging
polarimeter [12, 13, 34, 35, 53] can be designed. These kind
of systems are oriented to measure the spatial polarization
properties of systems by using 16 independent images.
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press

221



J M Bueno

[48] Bueno J M and Artal P 1999 Polarization and double-pass
estimates of the retinal image quality in the human eye
EOS Topical Meetings Digest Series 23 pp 42–3

[49] Rotter L D and Kaiser D L 1995 Polarimetry of
inhomogeneous films of anisotropic crystallites:
birrefringence in BaTiO3 thin films J. Opt. Soc. Am. A 12
999–1009
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