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Corneal wave aberration from videokeratography:
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A procedure to calculate the wave aberration of the human cornea from its surface shape measured by video-
keratography is presented. The wave aberration was calculated as the difference in optical path between the

marginal rays and the chief ray refracted at the surface, for both on- and off-axis objects.

The corneal shape

elevation map was obtained from videokeratography and fitted to a Zernike polynomial expansion through a
Gram—Schmidt orthogonalization. The wave aberration was obtained also as a Zernike polynomial represen-

tation.

The accuracy of the procedure was analyzed. For calibrated reference surface elevations, a root-

mean-square error (RMSE) of 1 to 2 um for an aperture 4—6 mm in diameter was obtained, and the RMSE
associated with the experimental errors and with the fitting method was 0.2 um. The procedure permits es-
timation of the corneal wave aberration from videokeratoscopic data with an accuracy of 0.05-0.2 um for a
pupil 4-6 mm in diameter, rendering the method adequate for many applications. © 2000 Optical Society of

America [S0740-3232(00)01205-9]

OCIS codes: 330.4460, 330.5370, 330.7310, 080.1010.

1. INTRODUCTION

An accurate procedure to obtain the corneal aberrations
from the corneal shape is required in different applica-
tions. In basic studies the corneal aberrations used in
conjunction with those measured in the complete eye
serve to estimate the relative sources of aberrations in the
human eye'® or can be incorporated into more elaborated
schematic eye models.? In cases of relevant clinical in-
terest, i.e., keratoconus®* and corneal refractive sur-
gery,?% the corneal aberrations also provide important in-
formation.

The wave aberration of the cornea is modified by the in-
ternal ocular surfaces>”® to produce the final retinal im-
age, and therefore measuring only the anterior corneal
aberrations is not the most adequate procedure to evalu-
ate the overall image quality in the eye. However, the
cornea is the main refracting element and probably also a
major contributor to the ocular aberrations.” Moreover,
this will certainly be the case in abnormally aberrated
corneas, such as those reported after refractive surgery.

The spherical aberration has been usually considered
as the main aberration of the cornea,”!° in addition to the
astigmatism, but since new corneal topography devices
have permitted more detailed studies of the corneal sur-
face, the importance of comal'’ and higher-order
aberrations'? has been revealed.

The first step in estimating the aberrations produced
by the anterior surface of the cornea is to measure the
cornea’s shape accurately. In the early 1960’s Jenkins
already noted!® the importance of having an instrument
capable of measuring with precision the corneal curvature
at each point. Various techniques have been proposed to
measure the corneal topography: interferometry, ultra-
sonography, profile photography, and holography; but
many of the devices in practical use today (e.g., videokera-
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toscopes) are based on the Placido disk principle. In this
system, a series of concentric rings reflected on the cornea
are imaged by a video camera and the corneal geometry is
obtained in each meridian from the ring spacing. Sev-
eral studies'®'® that used calibrated surfaces showed
that, owing to the approximations in the surface recon-
struction computations, Placido-based devices do not ac-
curately measure the corneal shape, in particular in the
periphery and when the surface differs greatly from a
sphere. In addition to the errors due to the reconstruc-
tion algorithms, other sources of inaccuracy arise from
the measuring process, for instance, tilt between the op-
tical axis of the cornea and the axis of the instrument, de-
focus in the ring image, and misalignments of the eye.

A second problem related to the determination of cor-
neal aberrations is how to calculate them once the corneal
surface is known. A direct approach is to obtain
a remainder lens by subtracting the best conic surface fit-
ted to the measured cornea and simply to calculate the
aberrations by multiplying by the refractive-index
difference.'® However, this method neglects some aber-
ration terms that can be important.  Another
alternative!! uses an approximate (neglecting nonlinear
terms) analytical expression that depends on the corneal
surface.

We present here a further procedure to estimate the
aberrations of the cornea from the corneal elevations
measured with a videokeratoscope, and we analyze its ac-
curacy in detail.

2. METHODS

A. Wave Aberration Associated with a Refracting
Surface

This section presents a procedure to obtain the wave ab-
erration associated with a given surface for point objects
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located both on axis and off axis. Figure 1 shows a sche-
matic representation of the image formation by a refract-
ing surface separating two media of refractive indices n
and n'. An object point at an arbitrary position (x, y)
= (psin B, pcos B) on the plane XY has its image cen-
tered at the point (x',y’) = (—p’'sinpB, —p’cosp)
= (x/m, y/m) of the paraxial plane X'Y’, where m is the
magnification. A marginal ray intersects the system at
some point (r, ) of the exit pupil. Corresponding to this
point, the surface has an elevation z(r, 6). The wave ab-
erration (W) along a certain marginal ray is defined as the
difference in optical path length between the ray under
consideration, d — d’, and the chief ray, [ — [’, passing
through the center of the exit pupil'”:

W=nd+n'd —nl —n'l'. (1)

These four distances may be written as

1 =s(1+Y%)Y2 (2a)

I'=s'"(1+Y'%)¥ (2b)

d=s(1+X2+7Y%2+ 2%+ 2Z — 2AXY)"2 (3a)

SH
Il

S,(l + X/2 + Y/Z + Z/Q _ zz/ + 2AX’Y’)1/2,

(3b)

with X =r/s (X' =rls'), Y=pls (Y =p'ls"), Z
= zls (Z' = z/s'), and A = sin(6 + B).

An analytical expression for the wave aberration as a
function of the surface elevation, up to the fourth order in
pupil and object coordinates, is obtained from Eqs. (2a)
and (2b), rewritten as [ ~ s[1 + (p%/2s2)—(p*/8s%)],
when p, r, z < s, and from Eqgs. (3a) and (3b) expressed
as a Taylor expansion of three variables.!® If we take the
derivatives of the functions d and d’ with respect to X, Y,
and Z and rearrange terms, Eq. (1) for the wave aberra-
tion can be expressed as
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13 ) 2 S2 SIZ
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— —|r3(cos Bsin 0

+ sinBcosf)sinw + (n — n')
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1+ Fsinzw z
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1 1
+ n|— + —|rz(cos Bsin @ + sin S cos #)sin w
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n?l 1 1 1 1
+ — + —|2%¢in’w + n 3 3
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n n'\ r2z? n' n\r2z
+ | =+ — —_— - = |—. (4)
s8 s’ 2 s'? s?] 2

Since we are interested in surfaces with a general el-
lipsoidal shape, similar to that of the cornea, we express
the shape as a conic plus an asymmetric term:

7'2 r4 7'6
0= — + —K2+
2 0= ok T 8RS 16R5

K*+ -+ Az(r, 0),
(5)

where R is the base radius of curvature of the conic sur-
face and K is a constant of asphericity, with K > 0 corre-
sponding to an ellipsoid, K < 0 to a hyperboloid, K = 0 to
a paraboloid, and K = 1 to a sphere. K is related with
the eccentricity of the ellipsoid as K2 = 1 — e?. With ex-
pression (5), the wave aberration can be described as that
of a conic surface plus asymmetric terms:

Fig. 1. Imaging of an off-axis point object by a refracting surface separating media of refractive indices n and n’. The exit pupil is

located at the vertex of the surface.
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e?(n — n')

W(r,0) = Wsphere(r76) - SR3

r*+[(n —n")

+ Lsin? 0 + Mr? + N(cos Bsin 6
+ sin Bcos O)r sin w]Az + [T sin®? w + Ur?

+ V(cos Bsin @ + sin B cos 0)r sin w]Az2,

(6)
with
n 1/n' n
L= -n')—, M=—-|——- =/,
(n n)Zn’ 218’2 §2
1 1 n?l 1 1
N=n|l—+ —|, T=— + —,
s s’ 2 \n's’ ns
1/n n' 1 1
U=glg T em) VoM

The first term in expression (6) represents the wave aber-
ration for a spherical refracting surface and can be ex-
pressed by

_ 2 4
Wsphere(r’a) =aqgr” t agr

+ a,(cos Brsin § + sin Br cos )
+ a,(cos 2Br%cos 20 — sin2Br? sin 26)
+ a,(cos Br3sin 6 + sin Bricos §), (7)

where

L n'As’
ag=|—-T sinw — ——

a; = ————sin° w,
n

1/N . .
aCZE(E—V)smw, a, = = sin” @

represent the coefficients of defocus, spherical aberration,
distortion, astigmatism and coma, respectively. Defocus
is introduced if the image is observed at a plane separated
a distance As’ from the paraxial plane.

For objects on-axis (sinw = 0), expression (6) is re-
duced to

-n'As’ K?(n — n'")
W(r,n9) = 28—/27‘2 + agp + T 7‘4
+ (n — n")Az + Mr?Az + Ur?Az2, (8)

agp = (M/2R) — (U/4) being the spherical aberration for
a paraboloid. Only a spherical aberration appears in this
case for a refracting sphere.
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B. Corneal Surface Shape As an Expansion of Zernike
Polynomials

Most of the available videokeratoscopes measure the cor-
neal curvature or the elevations or both at a sample of
points along meridians having equal angular spacing.
Although curvature maps are commonly used in clinical
applications, elevation maps are more suitable in studies
of the optical properties of the cornea.’® Elevation maps
represent the distance (z;) from each point of the corneal
surface to a reference plane tangential to the vertex of the
cornea [Fig. 2(a)].

Elevation data may be expressed as a polynomial ex-
pansion. Zernike polynomials?®?! are an orthogonal set
providing a convenient mathematical representation for
the corneal aberrations. The corneal surface expressed
as a linear combination of L Zernike terms is??

L
2(p,0) = 21 a; Z(p,0), (9)
£

where p = r/r( is the normalized radial variable and @ is
the angular variable over the pupil, Z; is each Zernike
polynomial, and a; the coefficient. Table 1 lists the first
15 polynomials, corresponding to an expansion up to the
fourth order, and its counterpart in a monomial
representation.??

270

(b)

Fig. 2. (a) Elevation (z;) of the corneal surface at the sampled
point (r; , 6;) of the exit pupil. (b) Plane of reference and sample
of points where the elevation is measured.
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Table 1. First 15 Zernike Polynomials and Their Monomial Representation

Order Zernike Polynomial Monomial Representation
0 Z,=1 1
First Zy = 2pcos 6 x
Zg = 2psin 6 y
Second Zy=V3(2p% - 1) -1+ 2(x% +y?)
Zs = \J6p? cos 26 x2 — y?
Zg = \6p?sin 20 2xy
Third Z; = J8(8p% — 2)pcos 0 —2x + 3x(x? + y?)
Zg = \8(3p% — 2)psin 6 —2y + 3y(x? + y?)
Z 10 = \8p?cos 36 x(x2 — 3y?)
Z., = J8p®sin 36 y(3x2 — y?)
Fourth Zy = \/g(6p4 —6p2+ 1) 1+ 6(x* + y*— x2 — y2 + 2x%?)

Z 15 = \10(4p? — 3)p? cos 26
Z15 = J10(4p% — 3)p?sin 26

—3(x2 — y2) + 4(x* — yH
2xy[—3 + 4(x% + y?)]

Zy = \/ﬁp4 cos 46
Z5 = J10p* sin 46

xt — 6x%y? + yt
dxy(x? — y?)

Videokeratoscopy provides a finite number of values z;
for the corneal elevation [Fig. 2(b) shows an example],
whereas Zernike polynomials are orthogonal only on the
continuous unit circle domain, not over a discrete and fi-
nite sample of points (p;, ;). Therefore it is not possible
to calculate the expansion coefficients by using the advan-
tages of orthogonality directly. There are several meth-
ods to deduce the coefficients when the function is
sampled. The classical procedure has been the least-
squares method, consisting in minimizing the expression
Si[2a;Z; (p;,60;) — z;]* to obtain the coefficients a;. Al-
though, the least-squares method has been regarded as
numerically unstable owing to matricial inversion pro-
cess, it has been found stable with adequate sampling.?°
Another alternative that obtains each coefficient by
straightforward numerical integration and by use of the
orthogonal properties of the polynomials is not adequate
because of the uniformly distributed sample and the ex-
cessive two-dimensional integration required.

A third procedure that generates a set of polynomials
that are orthogonal on the finite and discrete sample al-
lows us to keep the advantages of an orthogonal
expansion.?%?%2*  This technique first requires the con-
struction of the new set of polynomials, V;(p, ), from the
Zernike ones. To find this intermediate set, we perform a
Gram—Schmidt orthogonalization to generate the new
polynomials through the iterative expression

Jj—1

V;=2Z;+ > DV, (10)
s=1

with Djs = _EiZjVS/EiVSQ, J = 2, 3,..., L, and s
=1, 2,..., j — 1. In a second step, corneal elevations
are decomposed into a linear combination of the new poly-
nomials:

L
2(p,0) = >, b;Vi(p,0). (11)
j=1

The values of the coefficients b; are computed simply as
orthogonal projections: b; = EiziVj/Eiij. Finally, by
comparison with the Zernike expansion, the following re-
lationship between coefficients b; and Zernike coefficients
(a;) is obtained:

L
a; = bJ + 2 akaj, arp = bL' (12)

k=j+1

C. Zernike Representation of the Wave Aberration
From the elevation values z(p;,6;), the exact wave aber-
ration W(p;, ;) is obtained at each point of the sampled
surface by means of Egs. (1)—(3). This set of values for
the wave aberration may be fitted to Zernike polynomials
by use of the same method as for fitting the corneal sur-
face, producing the next expansion:

L
W(p,0) = >, A;Z(p,0). (13)
j=1

When the refracting surface is expressed as a Zernike
polynomial expansion, an alternative way to obtain the
wave aberration in Zernike polynomials, which provides
the functional dependencies, consists of introducing the
right-hand side of Eq. (9) into Eq. (4). Coefficients for the
aberrations are obtained as linear combinations of the
Zernike coefficients for the surface when only the terms
up to the fourth order are kept:

r04

——0agp,
6v5

Ag=(n—n')ag +

65 1 Nr
= ——Ag+ —agre® + _0[(02 - \/§a7)sin,8
2V3 2V3 2V3

4

+ (ag — \/gag)cos Blsin w,



A. Guirao and P. Artal

Ay = (n

+

+

- n’)a2(3) +

n
— ") —sin2w + —
(n n)(Z,smw 3y

n

\/ga 7(8)]

Nro

V6
(ag — \/an

_((15 —

— +

ro Sin
2 osin B

(cos B)

a; acrOZ)

2
[02(3)

V1ba,5)sin B
(cos B)

)cos B
(sin B)

sin w,

a,r 2
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Aqgas = (n — n')aggqg + (n —n')

V3
X —=7lase) — \/Ba12(13)],

a5

Ay = (n — n')aiyas) , (14)

where v = (ro2M)/(n — n') and r, is the radius of the
pupil.

These expressions show how each coefficient expressing
the surface affects the fourth-order aberration coeffi-
cients. Coefficient Ag in Eq. (14) represents the spherical
aberration and has two terms: The first appears if the
surface is an ellipsoid, and the second corresponds to the
spherical aberration of the paraboloid (ag = 0). The
ideal conic surface for fourth-order aberrations (Ag = 0)

Ase) = (n — n')agse — —Ocos 2B+ (n —n') has an asphericity given by
6 (sin2pB)
3 K,? 8R” a (15)
n = ——agp.-
X (gSiHZ o + Zy)[aw;) - \/1—5a12(13)] 0 (n" —n) *
This value reduces to K2 =1 — (n%/n'?) (eq = n/n')
Nry when the object is at infinity. On the other hand, every
+ 7 2(ay — V8ay)sin B — 2(as term characterizing the surface passes directly to the ab-
26 (cos ) erration with the factor (n — n’). However, it is inter-
B \/Ea Jcos B]sin w esting to note the apparition of the off-axis and crossed
8 (sin ) ’ terms. For instance, a tilted surface [aq3) # 0] gener-
ates coma [coefficients Ay g)].
Coefficients A; for the aberration depend on the param-
, a.ro’ . eter v, i.e., of the distance s’ to the image plane. Aber-
Az = (n = n'ags) + _\/— sin 8 rations may be evaluated on a plane close to the paraxial
3V8 (con p) one, in particular, on the plane of the best image that can
9 be calculated by finding the value As’ that minimizes the
+(n —n')—=vays) — \/§a7(8)] Strehl ratio.?’ For not-very-large aberrations, the Strehl
3\/§ ratio is given approximately'’ by HJL:2 exp(—AjQ). The
N beist-image plane is determined by  solving
"o . 27 5A(dA;/ds’) = 0. Since the Zernike terms represent
* \/TS (a5 \/1—5a 12)(801;: [’g bélanéed ajberrations, a valid approximation to this equa-
tion consists of calculating the value As’ that yields A,
+ (ag — \/ﬁa 13)cos Bsin w, = 0 [defocus coefficient in Eq. (14)].
(sin B) Often it is useful to refer to the primary or Seidel aber-
rations, represented as expansions of the first Zernike
Aggan = (n = n)ason polynomials. Z, and Zj are tilt terms in the X and Y di-
rections, respectively. The term Z, represents defocus.
V3 Zs and Zg contain defocus plus astigmatism along 0° and
+ ——=Nry| (a5 — \/Ea 19)8in B 45°. Z,; and Zg4 represent coma and tilt, respectively. Zq
2 \/Z (cos B) represents spherical aberration plus defocus. Since in a
\/— . general surface the coordinates of the aberrations may
— (ag = V1bayy) (cs(): g s o, not be aligned in any specific direction with respect to the
Table 2. Aberration Seidel Coefficients in the Function of the Fourth-Order Zernike Coefficients
Name Magnitude Angle
Tilt A= 2[(Ay - \/§A7)2 + (A3 - \/gAs)Z]l/2 6, = arc‘canAgi—\/gA8
A, — \BA,
Astigmatism A, = 26[(A; — VIBA1R)® + (Ag — 154,9)°]" 6, = L pretan A0~ V1041
2 A5 — 15Ay
Defocus Ay =2V3A, — 6\5Ag — A,/2
Coma A, = 3\V8JA2 + A 0, = arctan%
Spherical A, = 654, ’
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symmetry of the system, the Seidel terms of the wave ab-
erration can be expressed as

Wseidel = Aqr? + Agr* + Ayr cos(6 — 6,)

+ A r?cos(6 — 6,) + Ar3cos(6 — 6,). (16)
By rearranging and grouping the Zernike polynomials, we
obtain the magnitude and the angle of the Seidel
terms.?%27 Table 2 lists the Seidel coefficients as a func-
tion of the Zernike coefficients.

3. ACCURACY AND LIMITATIONS OF THE
PROCEDURE

The precision of the wave aberration of the cornea ob-
tained with the procedure described above is limited by
different factors: accuracy of videokeratoscope devices to
measure the surface elevation, numerical accuracy of the
fitting method to Zernike polynomials, fourth-order ap-
proximations in the wave-aberration expansion, and ex-
perimental errors. In this section we study the impact of
each of these factors, determining the accuracy and limi-
tations of the complete procedure and establishing a
range in which one may expect accurate results for the
corneal aberrations.

To obtain the corneal shape, we used a MasterVue cor-
neal topography system, manufactured by Humphrey In-
struments. It is based on projection on the cornea of 20
Placido rings and posterior recording of the reflected light
by a video camera. An algorithm reconstructs the cor-
neal shape from the image of the rings by means of a
double iterative method that forces the convergence of
both the radial and the axial positions,?® providing the
values of corneal elevation (z;) and curvature (R;) in each
of the points (r;,6;) distributed in 20 rings and 180 me-
ridians [see Fig. 2(b)].

A. Accuracy of the Videokeratoscope

To test the videokeratoscope, we measured conic surfaces
with the following characteristics: four spheres with ra-
dius of 7.02, 7.94, 8.00, and 9.37 mm and three ellipsoids
with radius and asphericities of R = 7.03 mm, K = 0.6;
R =799,K = 0.8278; and R = 9.37,K = 0.6. Test sur-
faces were calibrated by profilometry and interferometry
with a root-mean-square error (RMSE) < 0.09 um (see
Ref. 13 for details). Surfaces were positioned with a
three-dimensional micrometric stage in front of the
videokeratoscope. The reference elevation of each cali-
brated conic surface was first obtained from its radius and
asphericity,

R — (RQ _ KZriZ)I/Z

Z(ri) = K2 ’

17

at each point of the sample, where r; is the radial posi-
tion. With the N values of corneal elevations, z;, ob-
tained from the videokeratoscope and the values obtained
with Eq. (17), the RMSE was calculated as
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N 1/2
1
RMSE = |—2 [z, — z(ri)]2] ) (18)
N5

Since the topographer used provides two independent sets
of data, elevation, and curvature, we also evaluated the
RMSE by using the new elevations obtained from the val-
ues of curvature.'3

Figure 3 shows the calculated RMSE’s, both from direct
elevations and from curvatures, for six of the calibrated
surfaces (three spheres and three ellipsoids) as a function
of the distance to the axis. The two sets of values for the
RMSE are similar, which is in agreement with the exigen-
cies of convergence in the double iterative algorithm in
the MasterVue system.?® The error is highest for the
surfaces with the largest radius, which indicates that
probably the algorithm is optimized for the typical radius
of the cornea (7-8 mm). As a general conclusion, the
RMSE increases as the radial distance increases. How-
ever, the RMSE is never higher than 3 um for an aperture
of 8 mm in diameter; for a central area of 4 mm in diam-
eter, the RMSE is lower than 1 um. In a similar analysis
for a TMS-1 corneal topographer, Applegate et al.'® found
RMSE’s within 5-10 um for a 6-mm-diameter aperture
and RMSE’s ~2 um for 4 mm in diameter.

To test the topographer with nonrotationally symmet-
ric surfaces, the calibrated surfaces were also measured
placed at different angles with respect to the topographer.

Sphere R=7.02 mm Ellipsoid R=7.03 mm, K=0.6

4 4
g 3 g 31
= =
2 24
8 . % .
E 14 . 0."85830 E 1 o‘..
ome8es 3555 st o e
0 LS R T 0 rrreTTrrTTTTy T T
0 1 2 3 4 0 1 2 3 4
r (mm) r (mm)
4 Sphere R=7.94 mm 4 Ellipsoid R=7.99 mm, K=0.828
3 CEE
2 2 L34
21 o w 2 «**0°
14 a8 14 I
2 sgoo 8 0"88 a . '::Oo °
0 0B | S R B 0 13260 T T T
0 1 2 3 4 0 1 2 3 4
r (mm) r (mm)
Sphere R=9.37 Ellipsoid R=9.37 mm, K=0.6
4 4 :
/g 34 .3 ,é 34 ;8
2 .8 2 J
a 2 .;o 5)_] 21 80
L3
=13 8° R °
& 1 . .008 s ] ) 1 i roo 83 [-]
L3 o
0 ggOloo" SRR 0 ”R'-’olo T T
0 1 3 4 0 1 2 3 4
r (mm) r (mm)
Fig. 3. RMSE between the actual values of surface elevation

and the measured values for each ring of the MasterVue system,
for six calibrated surfaces. The horizontal axis represents the
radial average distance from each ring to the vertex of the sur-
face. Solid circles, RMSE from the MasterVue elevation file;
open circles, from elevations calculated from the MasterVue cur-
vature file.
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Table 3. Radius of Curvature and Asphericity of
Six Calibrated Surfaces Estimated from
Videokeratoscopic Data, in Comparison with the
Actual Values, by Use of 15 and 20 Rings of the
MasterVue System

Calculated
Actual 15 Rings 20 Rings
R (mm) K R (mm) K R (mm) K
7.02 1 7.011 1.007 7.013 1.009
7.94 1 7.941 1.015 7.939 1.020
9.37 1 9.372 1.031 9.376 1.092
7.03 0.6 7.031 0.593 7.031 0.584
7.99 0.828 7.977 0.814 7.956 0.808
9.37 0.6 9.366 0.602 9.365 0.602
0.6 s Tocus™
OCus
_o0s| o<
g | °
= 0.4 o .
m 0.3 ® o
w
5 0.2 /
0.11 2".+coma(3")+spherical(4™)

O T

0 1 2 3 4 5 6 7

Zernike expansion order

Fig. 4. RMSE between the measured corneal elevations and the
elevations given by Eq. (9), for the fitting of the central area (5
mm in diameter) of a cornea as a function of the order of the
Zernike expansion. Open circles represent an expansion with
four terms (first-order plus second-order focus term) and an ex-
pansion with nine terms (second-order plus third-order cylindri-
cal terms plus fourth-order spherical term).

Elevations obtained were in agreement with the expected
results for each angle, with RMSE values similar to those
shown in Figure 3.

B. Numerical Accuracy of the Fitting Method

We fitted the calibrated surfaces to Zernike polynomials
and calculated the curvature radius and asphericity from
the Zernike coefficients.?? Table 3 presents these results
in comparison with the actual data. Values were calcu-
lated within the area covered both by the 20 Placido rings
and by only the first 15 rings. The largest discrepancies
in the estimation of radius and asphericity appear when
all the information is used. Taking the N values z; pro-
vided by the videokeratoscope and the elevations calcu-
lated with Eq. (9), the RMSE of the fitting is

N

1
RMSE = {N >

L

2 12
z; — 2 a;Zi(p;, 0;‘)} ] . (19

i-1 j=1

Within an area of 5 mm in diameter, the RMSE’s of the
fitting with 15 terms (fourth order) were lower than 0.2
pm. That value is of the same order as the fabrication
error of the surfaces.

We also calculated the RMSE’s for the fitting of a cor-
nea when a central area of 5 mm in diameter was mod-
eled with different orders in the Zernike expansion (see
Fig. 4). The values of the RMSE obtained (lower than
0.35 um for third order and higher) indicate that the ac-
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curacy with which the corneal surface is estimated is lim-
ited by the videokeratoscope and not by the fitting rou-
tine, since the error of the measurement device is 1 um
for the same area. On the other hand, Fig. 4 shows that
the value of the RMSE decreases slowly beyond the fourth
order (15 terms), and the reduction is low from 9 terms
(second order, plus the third-order cylindrical terms, plus
the fourth-order spherical term) to 15 terms. These re-
sults indicate that, for normal corneas, the lower-order
Zernike polynomials carry most of the information, in
particular, the terms corresponding to the Seidel aberra-
tions.

When the number of sampled points is large, polynomi-
als V; tend to the Zernike polynomials. Therefore the co-
efficients calculated for the Zernike expansion are practi-
cally independent of the number of terms employed.
That occurs for the number of points we used. Table 4
shows the coefficients for the fitting of a cornea by use of
the first 4, 6, 9, or 15 Zernike polynomials. When includ-
ing new terms, the first coefficients (except piston, which
is not relevant) remained practically constants.

C. Accuracy in the Estimation of the Wave Aberration
An error arises in the wave aberration owing to the
RMSE associated with the corneal shape measurements.
To evaluate the impact of this error on the estimation of
the corneal aberrations, we now consider, for simplicity,
the case of an object on axis at infinity. The surface base
of the cornea is

r2 K02r4
— +
2R 8R?
r? Kyt
— +
2R 8R?

. (K* — Ko*)r*
8R?
A rt

s

+ n—1n) E, (20)

z =

where K is the ideal asphericity [Eq. (15)]. The term
within brackets determines the position of the image
plane, and the second term corresponds to the spherical

Table 4. Zernike Coefficient Values When a
Corneal Surface Is Modeled with the 4, 6, 9,
or 15 First Terms Listed in Table 1

Zernike Coefficient Values (mm)

Zernike
Coefficient First 4 First 6 First 9 First 15
a 0.010820  0.000532 0.000757 0.000821
a, 0.000851 0.000817 0.000954 0.000954
as 0.000368  0.000352 0.000381 0.000381
ay 0.157641 0.158260 0.158791 0.157987
as —0.007624 —-0.007841 —0.007772
ag 0.003078 0.003146 0.003241
aq 0.000471 0.000498
ag 0.000166 0.000152
ay 0.001218 0.001208
a —0.000780
an —0.000005
ay 0.000057
a3 —0.000025
Qg 0.000018
Qs —0.000006
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Fig. 5. (a) Error in the spherical aberration when calculated
from the surface elevation measured with the MasterVue sys-
tem, as a function of the distance to the axis, for two calibrated
surfaces. Solid circles, sphere (R = 7.94 mm); open circles, el-
lipsoid (R = 7.99 mm and K = 0.828). The value n’ = 1.3375
was used to calculate the aberration. (b) Modulation transfer
function for the spherical surface mentioned in (a), calculated
with the actual wave aberration (solid curve) and the estimated
wave aberration (dotted curve). Pupil diameter, 4 mm.
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Fig. 6. Zernike coefficient values corresponding to the wave ab-
erration of a cornea, calculated up to fourth-order (white bars),
fifth-order (gray bars), and sixth-order (black bars).

aberration. Therefore, if the estimate of the elevation (z)
is not correct, a fraction of the RMSE is transferred to the
wave aberration as defocus. Figure 5(a) represents the
error in the spherical aberration that is due to the RMSE
in the elevation of two calibrated surfaces. Although the
error in the elevation increases approximately linearly
(see Fig. 3), the error in the spherical aberration is low for
small apertures. For instance, the RMSE is 1.5 um for
the calibrated sphere (R = 7.94mm) at r, = 3.5mm,
and the corresponding error in the spherical aberration
result is 0.5 um, approximately (n — n’) X RMSE. But
for ry = 2 mm the RMSE is 0.4 um and the error in the
aberration is only 0.05 um, almost three times lower than
(n — n') X RMSE. This  indicates  that  the
multiplication'® of the RMSE by the factor (n — n') over-
estimates the error in the aberration for small apertures,
since part of the RMSE implies an image-plane displace-
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ment that is not relevant to the image quality. Figure
5(b) shows the modulation transfer function calculated®®
for the sphere for a 4-mm-diameter pupil, from the actual
and measured values of spherical aberration. Differ-
ences between the two curves were small.

To determine the error that arose when the Taylor ex-
pansion of the square roots in Egs. (2) and (3) was taken
up to fourth order, we calculated the wave aberration in
Zernike polynomials of a cornea by using both methods
mentioned—elevation data fitting with posterior calculus
of the aberration with Eq. (14) and fitting of the exact ab-
erration values from Eq. (1). For a pupil of 4 mm in di-
ameter, the resulting error was lower than 0.003 wm (dif-
ferences between each pair of Zernike coefficients were
lower than 0.001 um), and for 8 mm in diameter, the error
was ~0.2 um. This indicates that both Eqgs. (4) and (14)
are accurate enough if the previous limitations are con-
sidered.

Figure 6 shows the Zernike coefficients of the wave ab-
erration of a cornea when fourth-, fifth-, and sixth-order
expansions are used. Higher-order coefficients are very
small, and the first coefficients are similar if more terms
are added.

D. Experimental Errors

We compared the results obtained from four sets of data
measured in a calibrated sphere and in an astigmatic cor-
nea. Figures 7(a) and 7(b) show the mean value and the
standard deviation of the first 15 Zernike coefficients rep-
resenting the surfaces, for a pupil of 4 mm in diameter.
As one should expect, in the case of the calibrated sphere
every coefficient is approximately zero except a, and agq
(curvature and asphericity). From those coefficients we
obtained R = 7.9902 * 0.0358 mm and K = 1.0016
+ 0.0182, in good agreement with the reference data.
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Fig. 7. (a) Mean value and error bars (two standard deviations),
from four videokeratographs, of the first 15 Zernike coefficients
representing a calibrated spherical surface (R = 8 mm), for a
4-mm-diameter pupil. (b) Same as (a), except for a cornea. (c)
Mean value and error bars (two standard deviations) of the
Zernike coefficients corresponding to the wave aberration calcu-
lated from the data of (a). (d) Same as (c), except for the wave
aberration of the cornea of (b).
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Fig. 8. (a) MTF from the wave aberration of the sphere of Fig.
7(c), calculated with the mean values of the Zernike coefficients
(solid curve), and with the mean values plus two standard devia-
tions (dotted curve). (b) Same as (a), except for the cornea of
Fig. 7(d).
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Fig. 9. First 15 Zernike coefficients for the corneal wave aber-
ration calculated in a subject when the subject was instructed to
blink before recording the videokeratography (white bars) and
not to blink during the preceding 5 s (gray bars).

The error intervals were lower than 0.1 um for the
sphere. The interval of variability for the cornea was
also small, with standard deviations lower than 0.1 um,
except for the tilt coefficient, a,, with a standard devia-
tion of 0.15 um. This larger error is reasonable because
of the right—left motion of the head, and it is not relevant
for the wave-aberration estimation.

An error interval of ~0.2 um appears in the estimation
of the surface elevation as a result of that variability.
This value is five times lower than the RMSE that re-
sulted from the videokeratoscope for the same aperture.
That means that the limitation of the procedure is im-
posed by the instrument, as previously mentioned. Fig-
ures 7(c) and 7(d) show the mean values of the Zernike
coefficients corresponding to the wave aberration (for
4-mm diameter) calculated from the previous elevations.
Figures 8(a) and 8(b) represent modulation transfer func-
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tions calculated for the cornea and the calibrated surface,
with the mean values of the aberration Zernike coeffi-
cients and with the mean values plus the experimental
error. Differences between each pair of curves were
nearly negligible.

E. Effect of the Posterior Surface of the Cornea

The posterior surface of the cornea has not been consid-
ered in this study. This surface separates two media
with similar refractive indices and contributes to a small
fraction of the eye power. We used the geometry of the
anterior surface, using the separation of air (n = 1) and
aqueous humor with an effective refractive index (n’
= 1.3375) to calculate the aberrations of the complete
cornea. To consider somehow the effect of both surfaces,
a group of authors has proposed for the humor an effec-
tive refractive index that depends on the radial
coordinate.?! However, since we do not have access to ac-
curate geometrical data from the second surface, we pre-
fer to neglect it (assuming a certain interval of error)
rather than assuming an incorrect posterior corneal
shape. To estimate the error associated with this ap-
proximation, we considered a typical cornea with the fol-
lowing parameters:

e First surface®: R = 7.8mm and K = 0.9, separat-
ing refractive indices 1 and 1.3771.

e Second surface: R = 6.5mm and K
e [0.632, 0.894], separating 1.3771 and 1.3374.

With this interval for the values of asphericity of the pos-
terior corneal surface, the prediction of the schematic eye
of Liou and Brennan? lies within the range of empirical
results for the spherical aberration. Considering the
two-surface model, the Zernike coefficient for the corneal
spherical aberration is then within the interval Ag
= [—0.037,—-0.046] um, whereas with the one-surface
simple model the coefficient is —0.039 um. This indi-
cates that the error from the model that we assumed is
similar to the indeterminacy that arises when both sur-
faces are considered, since the exact asphericity for each
subject is unknown.

F. Influence of the Tear Film

The first interface that refracts the light coming into the
eye is the tear film covering the cornea. Probably the
surface measured by the videokeratoscope is the tear film
instead of the anterior surface of the cornea. On the
other hand, a problem could arise if tear instability
changes the measurements, in particular, if the tears
break up during the recording of the videokeratography.
Figure 9 shows the values of the Zernike coefficients ob-
tained in a subject from measurements under two differ-
ent conditions: normal, when the subject just blinked be-
fore the recording (producing a normal tear film), and
keeping the eye opened during several seconds without
blinking (producing a more deteriorated tear film). Dif-
ferences between the two sets of results are relatively
small, which indicates that the method is robust against a
possible break in the tear film. However, if the time for
the nonblinking is sufficient to allow the tear film to
break up, it is not possible to record the videokeratogra-
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phy, owing to the low contrast in the images of the Placido
rings. This ensures that all measurements were made
with normal tear film.

4. SUMMARY AND CONCLUSIONS

We have described a complete procedure to calculate the
wave aberration of a refracting surface from the elevation
data. The wave aberration was calculated as the differ-
ence in optical path between the marginal rays and the
chief ray refracted at the surface. We have obtained a
general analytical expression truncating up to fourth or-
der the square roots of the distances. The procedure is
general and permits calculation of the aberrations of a
given surface for objects both on axis and off axis. For
aspheric surfaces we reobtained the known Seidel aberra-
tions for objects off axis generalized for objects at any lo-
cation on the plane (using a description with sine and co-
sine). For nonrotationally symmetric surfaces, we
obtained the aberrations as the addition of radial symme-
try terms and some asymmetric terms. In the wave-
aberration expression, some nonlinear and crossed terms
appear that could be important. The term Mr2Az in ex-
pression (8) indicates that, for example, a tilt in the sur-
face produces coma, or an astigmatic surface generates
fourth-order aberrations with angular dependency. In
practice, the calculation of the wave aberration by multi-
plying by (n — n') the residual elevations after subtract-
ing a reference conic from the measured elevations may
be used as an approximation, which neglects some aber-
ration terms. However, the complete expression [see
Egs. (6) and (8)] must be applied if a higher accuracy is
required. The equations derived here are useful for dif-
ferent cases such as objects on axis, objects at infinity,
spherical refracting surfaces, aspheric surfaces, and
plane-parallel plate. etc.; the equations may be reiterated
if more than one surface is present in the optical system.

The shape elevation map of the corneal surface was ob-
tained from videokeratoscopy and fitted to a Zernike poly-
nomial expansion. To calculate the expansion coeffi-
cients, a Gram—Schmidt orthogonalization, constructing
intermediate orthogonal polynomials over a discrete and
finite sample, was carried out. The wave aberration was
obtained also as a Zernike polynomial representation.
Several potential sources of inaccuracy are present in this
methodology: experimental errors due to defocus error,
misalignments, or movements; inaccuracy of the Zernike
fitting method; approximations in the square roots to cal-
culate the wave aberration; and assumptions intrinsic to
the videokeratoscopic devices. The last one is the great-
est limitation of the procedure. We tested the accuracy
of the videokeratoscope by measuring calibrated surfaces
with a MasterVue system, and we found an RMSE of 1-2
pm for an aperture of 4—6 mm in diameter, whereas the
RMSE associated with the experimental errors and with
the fitting method was 0.2 um. Experimental variability
was small, indicating that this device is not very sensitive
to alignment or defocus errors, although other devices
could present larger errors.'*

A fourth-order Zernike expansion (15 terms) is a good
approximation to the normal human cornea for pupils of
4-6 mm in diameter. For abnormal corneas (after radial

A. Guirao and P. Artal

keratotomy, for instance®?), higher-order terms should be
included. If an exact method to determine the corneal el-
evations is available, the inclusion of additional terms is
suggested to improve the accuracy (for instance, with 45
terms, up to eighth order, the RMSE of the fitting de-
creased to 0.02 um??). Approximations up to fourth or-
der in the Taylor expansion of the square roots in the
wave aberration are accurate for typical corneal dimen-
sions.

Several researchers have studied the accuracy of differ-
ent systems to measure the corneal shape. In general,
they found that the error in the estimation of the corneal
elevation increased with increased radial position and
when the surface differed from a sphere. Greivenkamp
et al.* compared the capabilities of three videokerato-
scopes (EyeSys, TMS-1, EH-270) to measure toric sur-
faces with curvature radius of 7.8 mm, finding that the
three instruments present a systematic error in detecting
the amount of astigmatism. For instance, for a five-
dimensional astigmatic surface the RMSE is 1.5-1.7 um
with the TMS-1 and EH-270 and 7.5 um with the EyeSys,
for apertures of 8 mm in diameter. For nonastigmatic
surfaces (sphere) they found a RMSE ~0.6-0.8 um (lower
than the 2 um we found in the sphere of 7.94-mm radius
for a similar area). Applegate et al.'® discussed whether
the surface elevation measured with videokeratoscopes
may be used to estimate the corneal wave aberration ac-
curately. For a TMS-1 system they found a RMSE eleva-
tion measurement of ~5 um for a pupil of 8 mm in diam-
eter and fixated an error for the aberration of 0.3375
times this RMSE, i.e., approximately 2 um, which is a
high value when compared with the typical aberration of
the normal eye. With the MasterVue system the RMSE
is 3 um or smaller for the 8-mm-diameter pupil, and
therefore the error in the aberration is ~1 um. On the
other hand, we have demonstrated that a fraction of the
RMSE in determining the surface shape affects defocus,
especially for small pupils. For a 4-mm-diameter pupil,
the error in the spherical aberration is 0.05 um, whereas
the spherical aberration is ~0.5 um for the eye® or 0.4
wum for the cornea® for the same pupil.

In conclusion, the complete method presented here is
applicable with sufficient precision to calculate the wave
aberration of the cornea from videokeratoscopic data over
an area of 4—6 mm in diameter. The accuracy of the pro-
cedure is limited by the error of the videokeratoscopes to
obtain the corneal elevation. This error depends on the
corneal topography system used and should be tested in
each case to determine the range of precision. Since the
error is a systematic one, increasing from center to pe-
riphery, comparative studies of the corneal aberrations
may be extended to larger pupils. In the future the ac-
curacy of determining with this procedure the actual
wave aberration of an individual cornea will be better if
videokeratoscopes with improved capabilities or new cor-
neal topography devices providing more accurate mea-
surements are available.
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