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We apply a computational technique to retrieve the wave aberration of the eye from the point-spread function

obtained from pairs of double-pass retinal images.

The method consists of an adapted pyramidal version of a

nonlinear least-squares fitting procedure to a wave aberration expressed as an expansion in Zernike polyno-
mials. Although the procedure provides accurate estimates of the wave aberration, it presents several draw-
backs that are discussed in detail. In particular, since a great deal of computational time is necessary to
retrieve a single wave aberration, this technique is not useful for real-time applications. We present results
of wave aberrations in five normal subjects in the fovea for a 4-mm-pupil diameter. In every case there is a
clear presence of comalike aberrations, while the third-order spherical aberration is usually smaller than pre-
vious estimates. The root-mean-square error in the retrieved wave aberration, when defocus and astigmatism
were corrected, ranges from 0.24 to 0.5 wavelength. The particular values of the aberration coefficients
present a large intersubject variability. © 1998 Optical Society of America [S0740-3232(98)00209-9]

OCIS codes: 330.5370, 330.4460, 100.5070.

1. INTRODUCTION

The wave aberration (WA) function completely character-
izes the image-forming properties of an optical system.!
The Seidel aberrations, point-spread functions (PSF’s),
and optical transfer functions can be computed from the
wave-front aberration. In the case of the human eye, the
WA’s value derives not only from its ability to completely
describe the ocular optics but also from the fact that it
serves as a very useful tool in ophthalmic design (lenses,
contact lenses, or intraocular lenses) and as an index to
evaluate the eye’s optical quality after refractive surgery.
In addition, the application of adaptive-optics techniques
in the eye?™ for high-resolution retinal imaging or for su-
pernormal vision also requires more precise estimates of
the ocular WA.

A large variety of techniques have been proposed to
measure the WA in artificial optical systems.® Some are
based on direct or indirect estimates of the wave front
from data of the pupil plane: radial shearing interferom-
etry, point diffraction interferometry, Foucault knife-edge
test, or Hartmann—Shack sensor. Other techniques use
data on the image plane: the curvature sensor,® or com-
putational phase retrieval techniques.”® Only some of
these methods have been adapted for use in ophthalmo-
scopes to measure the WA in the human eye®: the Fou-
cault knife-edge test,'® the objective version of the
aberroscope,'! the Hartmann—Shack sensor,'®!3 or the
application of phase retrieval computations to retinal
images.14

Following this last approach, we have developed an im-
proved and more robust computational procedure to re-
trieve the wave-front aberration from the ocular PSF ob-
tained from pairs of double-pass retinal images. To
correctly estimate all the ocular aberrations, including
the asymmetric ones, two different double-pass images
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have to be recorded. The reason for this requirement is
that, since the double-pass image is the autocorrelation of
the input and output spread function,'® when entrance
and exit pupil sizes are equal, the information on the odd
aberrations and the actual point spread is lost. Using
unequal entrance and exit pupil sizes, the double-pass
technique permits recording of a low-resolution version of
the ocular PSF.}® From these two retinal images the
PSF is reconstructed and serves as input data in the pro-
cedure to retrieve the WA. We present here a description
of the retrieval method that we developed to determine
the WA, together with examples of the WA results ob-
tained in five normal eyes.

2. METHOD

A. Reconstruction of the Point-Spread Function from a

Pair of Double-Pass Retinal Images

The complete procedure for obtaining the ocular PSF from
a pair of double-pass retinal images was described in de-
tail elsewhere.!” One of the double-pass images is cap-
tured with the same-diameter pupil for the entrance and
exit apertures. This corresponds to the autocorrelation
of the PSF. The other image is captured with an
unequal-pupil-diameter double-pass configuration'é; one
of the apertures, typically the entrance one, is of small di-
ameter (1.5 mm), and the other is of the desired diameter
to be measured. This image is a low-resolution version of
the ocular PSF or, more precisely, the convolution of the
PSF with the spread function corresponding to a 1.5-mm-
diameter pupil. We assume that the eye for this small
pupil is similar to a diffraction-limited system or, at least,
that it produces a radially symmetric retinal image when
the small pupil is correctly centered with respect to the
natural pupil.'® We combined these two double-pass im-
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ages to reconstruct the actual PSF of the eye by using an
iterative phase retrieval algorithm (see Ref. 17 for addi-
tional details).

B. Computational Procedure To Retrieve the Wave-
Front Aberration from the Point-Spread Function

The ocular PSF, P(x), is related to the wave-front aber-
ration, W(v), through the expression

where x and v are retinal and pupil plane generalized co-
ordinates, respectively; FT denotes Fourier transforma-
tion; m(v) is the modulus of the pupil function; and X\ is
the wavelength. Calculation of the WA, W(v), from the
ocular PSF constitutes a typical phase retrieval problem.?
Two functions are known: the modulus of the field on the
diffraction plane, given by the square root of the PSF, and
the modulus of the field on the pupil plane, which corre-
sponds, assuming uniform illumination, to a binary circu-
lar mask determined by the aperture radius. This is an
approximation because the light distribution in the pupil
plane after retinal reflection is no longer uniform owing to
the photoreceptor directionality.®

The different methods that have been used to solve this
inverse problem, the retrieval of the WA from the PSF,
can be classified into two main groups: nonlinear para-
metric optimization methods that provide a modal repre-
sentation of the WA,” and methods based on iterative
Fourier-transform algorithms?® that provide a point-to-
point phase map in principal value. In this study we con-
centrated on the first group of techniques since they are
numerically more stable, especially in noisy conditions
and with highly aberrated systems, as can be the case in
the human eye.

The WA was expressed in terms of a Zernike polyno-
mial expansion!:
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where a = {a,, ag,..., a;} is a coefficients vector and
Z,(r,0) represents the polynomial elements of the
Zernike basis expressed in normalized polar coordinates
(r is equal to unity on the pupil edge). Table 1 shows the
first 15 terms of the Zernike polynomial expansion along
with the correspondence to Seidel aberrations of each
term (Noll’s normalization was adopted).?! We selected
the Zernike polynomial expansion because it offers some
advantages. For instance, it is an orthogonal basis onto
a circular aperture of radius unity; its modes, distributed
in pairs with odd and even symmetry, are useful for de-
scribing systems not symmetrical with respect to their op-
tical axis, as is the case of the eye; these polynomials
present an adequate balance among the coefficients; and,
finally, there is a direct relationship between the first
terms of the Zernike polynomials and the Seidel aberra-
tions.

The field propagated from the pupil to the diffraction
(retinal) plane, according to the Fraunhofer approxima-
tion, is??
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Table 1. Zernike Polynomial Expansion
(First 15 Terms) Used in This Study

Correspondence with

ay Z,(r,0) Seidel Aberrations
a, 1 Constant
ay 2r cos 0 Tilt
as 2r sin 6 Tilt
ay V3(2r2 — 1) Defocus
as J6r2 sin 26 Astigmatism
ag V672 cos 26 Astigmatism
a; V8(3r3 — 2r)sin 0 Coma
ag J8(8r3 — 2r)cos 0 Coma
Qg V873 sin 36
aip V873 cos 36
a \/E(Gr4 - 6r2+1) Third-order spherical
Q1o J10(4r* — 3r%)cos 26
a3 \/1_0(4r4 — 3r?)sin 26
A1y \/Er4 cos 46
ais \/Er4 sin 46
2
G(x, a) = FT[m(v)exp i ~ W(v, a) ], (3)

and the PSF is simply the square modulus of G(x, a).
We constructed an error function for a given estimation of
the parameter vector a as follows:

E(a) = 2, [|A(x)| - |G(x, a)|1%, @)

with |A(x)| being the actual modulus of the field on the
retinal plane (i.e., the square root of the eye’s PSF) and
|G(x, a)| the modulus retrieved from the WA estimation.
This error function has a nonlinear dependence with vec-
tor a. The optimization problem consists of searching for
the best estimation of the parameter vector a, that is, the
value of vector a that minimizes the error function E(a)
and corresponds, therefore, to the maximum-likelihood
estimation in the presence of additive noise.” The par-
ticular nonlinear optimization method employed was the
Levenberg—Marquardt (LM) algorithm,?® a modification
of the Gauss—Newton algorithm,?* which has become a
standard in nonlinear optimization problems.

The error function of expression (4) can be approxi-
mated by a quadratic form given in a Taylor polynomial
expansion by

E(b) = E(a) - ; Brdy + % @845, (5)

where 6, is the variation of the a, parameter, 3, is the
gradient vector for the metric, and «;; is its curvature
matrix:

1 92E(a)
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The variation of each parameter in the direction of mini-
mization of the error is determined by solution of the sys-
tem of equations
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; apé; = Bp- ¢

The strategy of the LM algorithm is to introduce a param-
eter € in the configuration of the curvature matrix a;;:

ap = ay(k # 1),
ap, = ap(l + 6, (8)

accompanied by a readjustment mechanism that in-
creases or reduces the value of € depending on the evolu-
tion of the error E(a). In this sense the algorithm ap-
proaches the global minimum by means of the quadratic
approximation when it reduces the error or, in the con-
trary case, primarily by means of the gradient.

Let us now discuss the pyramidal version of the LM al-
gorithm. Although the LM algorithm is a robust optimi-
zation procedure, it is not capable of discriminating be-
tween global and local minima of the error function. In
simulated cases that are similar to the eye in terms of
magnitude of aberrations and amount of noise, the algo-
rithm either yields incorrect estimations of the aberra-
tions or requires a very large number of iterations.
Therefore, to avoid the stagnation in local minima and to
speed the convergence, we applied a recursive pyramidal
strategy to the LM algorithm. Here we will refer to this
procedure as the LM pyramidal algorithm. In summary,
this method consists of applying the LM algorithm to a
succession of phase retrieval problems of increasing com-
plexity, corresponding to different subsampled versions of
the PSF associated with a particular parameter vector a.
One generates these subsampled PSF’s, related to the
same WA map, by increasing the pupil diameter, rescal-
ing the radial coordinate of the Zernike polynomial ex-
pansion to equal unity on the pupil edge, and keeping the
size of the image the same in both the pupil and the dif-
fraction plane. Figure 1 shows, as an example, three of
the sampling cases, with the panels at the bottom corre-
sponding to the actual retrieval problem. By application
of this recursive procedure, a series of linked optimization
problems associated with the original phase retrieval
problem for a fixed number of free parameters is solved in
a pyramidal scheme, wherein the topology of the param-
eter space and the error function changes slightly be-
tween consecutive stages. This last condition strongly
reduces the probability that a local minimum solution of a
particular subsampled PSF problem will be a local mini-
mum solution of the following less subsampled stage.
This destabilizes the algorithm and orientates the fitting
to a solution closer to the global minimum of the error
function. Furthermore, computer simulations have con-
firmed that the number of local minima in the error func-
tion decreases when the sampling rate in the diffraction
plane decreases. The pyramidal procedure starts with a
pupil radius larger than the actual one (the limit, im-
posed by the sampling theorem, is R = W/2 pixels for a
W X W pixel window) and finishes when the correct pupil
size (original PSF sampling rate) is reached, providing
the overall process with an initial estimation for a final
LM problem, a result much better than the null a vector.
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C. Computational and Experimental Procedure

The calculations were performed in a Silicon Graphics
Power Challenge workstation. The programs were writ-
ten in C under the KHOROS 2.0 software development en-
vironment for image processing.?’

The pyramidal strategy was accomplished by use of an
initial normalization radius of 128 pixels (half the window
width) and a decrease in the pupil radius R in steps (A) of
2 pixels up to a final radius of 86 pixels. A final LM cycle
was applied with the actual pupil radius associated with
the original sampling rate of the PSF image (R = 85 pix-
els, except for subject PA, for whom R = 64 pixels). For
each radius, 400 iterations were performed. In all cases
the null vector was adopted as the initial estimation of
the parameter vector a. The LM pyramidal algorithm
takes approximately 9 s per iteration when 14 free pa-
rameters (corresponding to the first 15 Zernike polynomi-
als) and images of 256 X 256 pixels are considered. Un-
der these conditions the average total computer time for
retrieval of the WA was approximately 20 h. A second
pyramidal process with a starting parameter vector that
was obtained in the first pyramidal process and with the

Fig. 1. Schematic diagram of the pyramidal strategy for an op-
timized phase retrieval (LM pyramidal algorithm). The panels
on the right are 64 X 64 pixel central sections of different sub-
sampled versions of the PSF. The panels on the left are the as-
sociated WA maps, for pupil and normalization radius of 128, 96,
and 64 pixels, respectively (from top to bottom), within an image
size of 256 X 256 pixels.
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Fig. 2. Sample of results of the whole process of WA retrieval in
subject AP. Double-pass images and PSF’s subtend 19.8 arc-
min. The WA map corresponds to a 4-mm-pupil diameter. (a),
(b) Experimental double-pass images recorded with symmetric
(4-4 mm) and asymmetric (4—1.5-mm-) diameter pupil size con-
figurations, respectively. (c¢) Reconstructed PSF from the
double-pass images of (a) and (b). (d) Map of the retrieved WA
modeled with the first 15 terms of the Zernike polynomial expan-
sion. The gray scale was adjusted between the P—V values. (e)
PSF associated with the retrieved WA. (f), (g) Pair of double-
pass images computed from the retrieved WA, to be compared

with the experimental double-pass images (a) and (b), respec-
tively.

(&
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same characteristics as those of the first did not produce a
significant reduction in the error. This suggests that the
pyramidal scheme induces the algorithm to evolve toward
quite stable local minimum positions in the parameter
space.

We obtained the WA in five subjects with normal vi-
sion. Prior to the collection of the retinal images, every
subject passed a complete ophthalmological exam. The
retinal double-pass images were collected with paralyzed
accommodation [by instillation of two drops of cyclo-
pentholate (1%)], with a 4-mm-diameter artificial pupil,
careful centering with respect to the natural pupil, and
green light (543 nm). The subjects tested had no clinical
values of astigmatism, and their spherical refraction and
ages were as follows: AP [-0.75 diopter (D), 24 years
old]; PA (=2 D, 35 years old); AG (0 D; 23 years old); NN
(+0.25 D, 29 years old); PR (—0.25 D, 29 years old). The
pair of double-pass images with equal (4—4-mm) and un-
equal (4—1.5-mm) pupil size configurations were recorded
with the setup and procedure described in Ref. 17. In ev-
ery subject the images were obtained at the focus position
that provided the best image quality.
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(b)

Fig. 3. (a) Comparison between the PSF’s (horizontal sections).
The solid curve corresponds to the actual data [Fig. 2(c)]; the
dashed curve, to the PSF associated with the retrieved WA [Fig.
2(e)]. (b) Comparison of the averaged radial profiles of the
modulation transfer functions (MTF’s). The solid curve is the
MTF computed from the double-pass retinal image [Fig. 2(a)l;
the dashed curve, the MTF computed from the retrieved WA.
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(a) (b) (h) )

® (2 (m) (n)

Fig. 4. Two samples of complete results in subject PA corresponding to two different pairs of double-pass images recorded under the
same experimental conditions. [(a), (b)], [(h), ()]: Pairs of experimental double-pass images registered with symmetric pupil configu-
ration of 4—4-mm diameter and asymmetric pupil configuration of 4—1.5-mm diameter. (c), (j): PSF’s reconstructed from double-pass
images: (d), (k): Maps of retrieved WA’s, represented without the coefficients of tilt as contour plots with line steps of 0.1 \. Dashed
curves represent negative values of the aberration. (e), (1): PSF’s associated with the WA estimates. [(f), (g)], [(m), (n)]: Double-pass
images computed from the retrieved WA’s. These images should be compared with the experimental images of panels [(a), (b)], [(h), (D)].
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3. RESULTS

Figure 2 presents a sample of the results, showing the
complete procedure, in one of the subjects (AP). Figure
2(a) is the autocorrelation of the ocular PSF (obtained
with equal 4-mm-pupil diameter in each passage), Fig.
2(b) shows the convolution of the 4-mm ocular PSF and
the 1.5-mm near-diffraction-limited pattern, and Fig. 2(c)
presents the reconstructed PSF obtained from the pair of
double-pass images [Figs. 2(a) and 2(b)]. These three im-
ages subtend 19.8 arc min, and the image histogram was
slightly modified for improved clarity of the details, espe-
cially in the tail of the images. The reconstructed PSF of
Fig. 2(c) is used as input data in the retrieval procedure to
obtain the WA. Figure 2(d) shows in a gray-level map
the obtained WA (the diameter of the circle corresponds to
4 mm in the pupil plane). The peak-to-valley (P-V)
range of this WA, expressed in number of 543-nm wave-
lengths, is 3.65. In the figure, black pixels correspond to
approximately —1 wave, and white pixels to approxi-
mately 2.6 waves. The other panels in the figure are
helpful for evaluation of how accurate the WA estimate is.
From the WA, we computed the associated PSF and the
corresponding double-pass images. These computed im-
ages, showed in Figs. 2(e)—2(g), should be compared with
the experimental results of Figs. 2(a)—2(c). In this case,
the input images and the images associated with the re-
constructed WA are quite similar in both shape and ex-
tension. Figure 3(a) shows a comparison of the horizon-
tal sections of the PSF’s: the actual data (solid curve),
and the PSF associated with the retrieved WA (dashed
curve). Figure 3(b) shows a comparison of the averaged
radial MTF’s: that computed directly from the double-
pass image [Fig. 2(a)] recorded with equal pupil diameter
(solid curve), and that computed from the retrieved WA
(dashed curve). There are some small differences be-
tween the PSF’s; in particular, the high-spatial-frequency
details have not been completely captured. The main
reason for this result is that we are modeling the final WA
with only 15 terms in the Zernike polynomial expansion.
However, with this number of terms (complete third or-
der), we are modeling the most important part of the eye’s
optics for this pupil diameter.!®> The results shown in
Fig. 3 further confirm this, since the MTF’s are very simi-
lar in the low- and mid-spatial-frequency range, suggest-
ing that the number of terms that we are using is ad-
equate. In addition, the good agreement between the
MTF’s indicates that the retrieved WA is precise enough
to correctly predict the MTF. For high spatial frequen-
cies, the MTF associated with the wave front is higher
than that obtained from the double-pass image.

A potential problem of this procedure is how to decide
whether the retrieved WA is a correct and realistic esti-
mate or whether it corresponds to a local minimum of the
error function, related to a nonrealistic solution. Al-
though one can exactly determine this only when using
simulated data, we compared the WA’s obtained from the
same input PSF, combining a different number of itera-
tions and values of the step parameter A in the pyramidal
procedure. The Zernike coefficients of the retrieved WA’s
were relatively similar, showing that, in every case, we
were reaching minima that were located in the error
space close to one another.
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Table 2. Zernike Coefficients (in \) Obtained from
Two Pairs of Double-Pass Images in Subject PA*

Data from PA

ay (2) 3)
a; CTE® 0.000000 0.000000
ag Tilt x 0.119168 0.120095
ag Tilt y 0.039403 0.067154
a4 Defocus —0.046165 —0.036906
a5 Astigmatism y —0.181802 —0.145588
ag Astigmatism x 0.087442 0.095624
a7 Coma y —0.006237 —0.013968
ag Coma x 0.048557 0.066044
agy —0.078176 —0.108839
aip —0.084068 —0.022084
a1y Third-order spherical —0.003645 0.002921
ay —0.017268 0.002602
a3 —0.007635 0.006830
ay —0.001140 —0.030166
as 0.014478 0.017230

%Columns (2) and (3) correspond to the results given in Figs. 4(a)-4(g)
and 4(h)—4(n) respectively.
bCTE, constant term.

To further test how robust this method for estimation
of the WA is, we repeated twice the complete procedure in
subject PA for two pairs of double-pass images collected
under identical experimental conditions. Figure 4 shows
the complete sample of the results for the two cases [Figs.
4(a)-4(g)] and 4(h)-4(n) with the same structure as in
Fig. 2: the double-pass images [Figs. 4(a), 4(h) and 4(b),
4(1)]; the reconstructed PSF [Figs. 4(c) and 4(j)]; and the
WA’s [Figs. 4(d) and 4(k)]. The WA maps are repre-
sented as contour line plots with solid and dashed curves
for positive and negative values, respectively. The two
reconstructed PSF’s are similar in shape, although they
are slightly rotated with respect to each other, probably
because of a different centering during the recording of
the double-pass images. The overall shape and absolute
value of the aberrations are similar, with a P—V value of
1.73 and 1.66 wavelengths for each case. In addition, in
both cases the retrieved WA’s clearly follow the main di-
rection of the coma of each input PSF. Table 2 shows the
values of the 15 Zernike coefficients in waves for the two
retrieved WA'’s of Fig. 4. Panels (e)—(g) and (I)—(n) of Fig.
4 present the PSF and the double-pass images computed
from the WA’s, to be compared with the actual data of
panels (a)—(c) and (h)—(j) of Fig. 4, respectively.

Figure 5 shows the WA’s obtained in the five subjects
participating in this study. For each subject (identified
by the initials in the left-hand part of the figure), the ac-
tual PSF’s (left-hand panel), the retrieved WA (central
panel), and the associated PSF (right-hand panel) are
shown. The PSF’s are presented as gray-scale images
and subtend 19.8 arc min (except for subject PA, whose
PSF subtends 14.7 arc min). The WA’s are for a 4-mm-
pupil diameter and are represented as contour lines with
0.1 wavelength separation between adjacent lines. The
numbers superimposed on the WA graphs represent the
values in wavelengths for the particular line. Table 3



2472 J. Opt. Soc. Am. A/Vol. 15, No. 9/September 1998 Iglesias et al.

Fig. 5. WA results in the five subjects considered. For each subject (identified by initials on the left), the input PSF (left-hand panel),
the retrieved WA (central panel), and the associated PSF (right-hand panel) are represented. The WA’s are in contour line graphs
(without coefficients of tilt), with 0.1-\ separation among adjacent lines and negative values represented in dashed curves.
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Table 3. Zernike Coefficients (in \) for the Five Subjects Participating in This Study”

Subjects
ay AP PA AG NN PR
a; CTE 0.000000 0.000000 0.000000 0.000000 0.000000
ay, Tilt x 0.184799 0.119168 —0.147765 —0.111866 —0.018726
ag Tilt y 0.356953 0.039403 0.024901 —0.059382 0.038468
ay Defocus 0.038801 —0.046165 0.072728 —0.100268 —0.2001
a5 Astigmatism y —0.211828 —0.181802 —0.080422 0.186981 —0.037951
ag Astigmatism x —0.349898 0.087442 —0.263914 0.293286 —0.032981
a; Coma y 0.178249 —0.006237 —0.004541 0.038017 —0.007575
ag Coma x 0.065504 0.048557 0.008972 0.008533 —0.052184
ay —0.188917 —0.078176 —0.139822 —0.160408 0.068636
aqp 0.055095 —0.084068 —0.163935 —0.125630 0.144763
aq; Third-order spherical —0.009450 —0.003645 —0.012590 —0.005709 —0.035096
aqy 0.041647 —0.017268 0.015568 —0.001830 0.002124
a3 0.048223 —0.007635 —0.010445 —0.007950 —0.010593
27 —0.078782 —0.001140 0.034643 0.017266 —0.044503
as —0.036367 0.014478 0.062210 0.033638 —0.061089
“The WA maps are in Fig. 5.
shows the values (in wavelengths) of the 15 Zernike coef- _5‘”
ficients of the WA’s in the five subjects. The values of the 5o 02 AP
coefficients a; to a5 for every subject are also plotted in § 0.15 n PA
Fig. 6. From the Zernike coefficients is easy to calculate g H NN
the values of the Seidel aberrations. In particular, the g 0.1 e
relationship between coma (A.) and spherical (A;) Seidel £ 0.05-
aberration and the Zernike terms of Table 1 is given by 5 I-
8 0w —7Tr'1 - JI
Ac = 3\/5\/((172 + a82)7 ‘:g_o'os_ I ]
Al
A, = 6\5a,;. ) g 011
Table 4 presents the values (in wavelengths) of coma and :°:-0.15 s
spherical Seidel aberrations for the five subjects. We 2 02 .‘ |
also calculated several parameters from every WA map: 7" 7 8 9 10 1 12 13 14 15

the P-V, the root-mean-square (rms) error, and the asso-
ciated Strehl ratio, which are shown in Table 5 for the five
subjects.

4. DISCUSSION

We have developed a procedure to estimate the WA in the
human eye from a pair of double-pass retinal images.
The results that we obtained in five normal subjects show
that the technique produces reliable estimates of the ocu-
lar WA. However, the procedure is relatively compli-
cated, and, more importantly, it requires a great deal of
computer time for calculation of a single WA. In this sec-
tion we discuss in some detail the major limitations of the
technique, and we compare the results of WA’s with pre-
vious estimates obtained by other methods.

A. Limitations of the Computational Phase Retrieval
Procedure

Two WA’s expressed by Zernike polynomials expansions
with a simultaneous change of sign in every term of even
power of the radial coordinate (r) produce exactly the
same PSF. That is, the PSF is invariant to the combined
effect of a 180° rotation and an inversion of the WA. This
implies that our phase retrieval procedure cannot distin-

Zernike coefficients

Fig. 6. Values of the Zernike coefficient (a;—a5) for the five
subjects in number of \.

Table 4. Values (in \) of the Seidel Spherical and
Coma Aberration for the Five Subjects, Computed
from Egs. (9) with the Zernike Coefficients
of Table 3

Subjects
Parameter

(in N) AP PA AG NN PR

Spherical aberration —0.126 —0.048 —0.208 —0.076 —0.47
Coma 1272 0.328 0.067 0.261 0.447

guish between two WA solutions, one corresponding to a
given set of values of Zernike coefficients, a,—ag and
ai11—aqs5, or a change of sign in all those terms. As a con-
sequence, we always have two possible solutions of the
WA, each equally compatible with the PSF data. To se-
lect one of the two equally possible solutions, we imposed
the condition that the a;; coefficient, corresponding to
third-order spherical aberration, be negative if it is sig-
nificatively different from zero. Although this is a some-
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how arbitrary selection, it is consistent with most of the
previous spherical aberration results for the unaccommo-
dated eye.?8

A different kind of problem consists in how the noise
present in the double-pass images can affect the conver-
gence of the algorithm and the accuracy of the results.
Noisy PSF’s could induce the retrieval algorithm to stag-
nate in local minima of the error space, and, as a conse-
quence, the WA estimates would not accurately represent
the actual aberrations of the eye. In addition, the re-
trieval technique performs worst with severely aberrated
systems. An intuitive interpretation is that, in these
cases, the nonlinear optimization should evolve from a
perfect system (with a null parameter vector a being used
as the starting point) to a final solution with a distant lo-
cation in the error space. Then the algorithm can easily
be trapped in any of the local minima. This limits the
application of the procedure to midsize pupil diameters

Table 5. Values of Strehl Ratio, P-V Values, and
Root-Mean-Square Error in the WA for Every

Subject
Subjects
Parameter AP PA AG NN PR
Strehl ratio 0.14 0.3 0.2 0.12 0.16

P-V values of the WA (\) 3.65 1.67 274 271 1.49
Rms error of the WA (\) 0.504 0.242 0.364 0.418 0.279

¢P-V values and rms error are expressed in number of \.
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(we present here results for a 4-mm-pupil diameter) and
double-pass images obtained at best focus and with the
astigmatism corrected.

The WA’s modeled with 15 terms in the Zernike
expansion could underestimate the aberrations of the eye.
Figure 7 shows a comparison of two MTF’s in four sub-
jects [the same results for subject AP are shown in Fig.
3(b)]. The MTF’s were computed from the double-pass
images (solid curve) and from the retrieved WA (dashed
curve). Except for subject AG, both curves agree quite
well, although the MTF estimated directly from the WA is
usually higher than the actual MTF. This suggests that
the procedure slightly underestimates the aberrations, in-
asmuch as we cannot correctly model high-order aberra-
tion details in the wave front with only 15 terms in the
Zernike expansion. By using a larger number of terms,
we would capture more details in the WA, but this would
be at the cost of increasing the complexity of the retrieval
problem and then decreasing its performance. Modeling
the WA with 15 terms is a good choice for the algorithm
performance; it completely covers third-order aberrations
and is in agreement with recent findings'® that show that
for small- and medium-size pupil diameters the complete
third order accounts for most of the ocular aberrations.

Another limitation of the method is that it requires
spending a great deal of computer time (roughly 20 h in
the computer workstation that we used) to obtain a WA
estimation from the PSF. Although it would be possible
to decrease by some factor the computer time by optimiz-
ing the code, the method is not of use for real-time appli-
cations, such as adaptive optics. However, there are a
large variety of possible applications in which immediate

1.00- 1.00
4. AG
0.75- 0.754 \:
=
E 0.50] 0.50-]
0.25- 0.251
0.00 0.00 : : S
0 0 19 38 57 176 95
1.00 1.00
PR
0.75+ 0.754 |
=
E 0.50- 0.50
0.25- 0.25
0.00 : N 0.00 — R —t

Spatial Frequency (c/deg)

Fig. 7. Comparison of the radial profiles of the MTF’s in four subjects (identified by initials).

T
0 19 38 57 76 95

0 19 38 57 76 95
Spatial Frequency (c/deg)
The solid curve is the MTF computed

from the double-pass retinal image; the dashed curve, the MTF computed from the retrieved WA.
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results are not mandatory and in which this procedure
could be successfully applied.

We used estimates of the WA obtained by this proce-
dure to correct the ocular aberrations in the eye, using a
liquid-crystal spatial light modulator device.* In an arti-
ficial eye, the double-pass images after correction of the
aberrations were similar to those predicted by computer
simulations.? This indicates that the retrieval procedure
produces accurate estimates of the aberrations and can be
considered as additional validation of this retrieval tech-
nique.

B. Comparison of the Estimated Wave Aberration with
Previous Results

Even when defocus and astigmatism is carefully cor-
rected, the remaining aberrations for a 4-mm-pupil diam-
eter make the eye much worse than a diffraction-limited
system. The average rms error for the five subjects is
0.36 \, five times larger than the common tolerance for
diffraction-limited performance (0.07 \). By contrast, the
variability among subjects in the overall ocular aberra-
tions makes the rms error range from 0.24 to 0.5 \. This
result is in agreement with previous measurements of the
eye’s optical performance that shows quite a large inter-
subject variability.'1327 One implication of this result
is that the use of very general eye models should be con-
sidered with caution. In addition, it appears that one
needs to use adapted corrections, when considering cor-
rection of the ocular aberration.

The results of the Seidel coma aberration were quite
significant in several subjects. This further confirms the
relative importance of coma in the image quality of the
eye in the fovea. In any case, the magnitude of coma
shows a clear dependence on the subject: While NN has
practically no coma, AP presents more than one wave.

We also analyzed the results of Seidel third-order
spherical aberration. Except for one subject, the spheri-
cal aberration was lower than 0.1 waves. This is ten
times lower than most of the previous estimates,?®?8
where, for a 4-mm-diameter pupil, approximately one
wave of spherical aberration was reported. Although in-
tersubject variability could again be a factor to be consid-
ered (in fact, one of our subjects has nearly a half-wave of
spherical aberration), the most probable reason is that in
most of the previous estimates a kind of global radial
symmetric aberration was actually measured instead of
the pure spherical aberration.
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